Skip to main content
Log in

Construction, crystal structures, and luminescence properties of three coordination polymers from the same precursor, 4-(1H-benzimidazol-1-yl)benzonitrile

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three coordination polymers based on different organic ligands, namely [Cu(bbn)2Cl] n (bbn = 4-(1H-benzimidazol-1-yl)benzonitrile, 1), [Zn(tpb)2] n (Htpb = 1-(4-(2H-tetrazol-5-yl)phenyl)-1H-benzimidazole, 2), and [Cd(bba)2(H2O)] n (Hbba = 4-(1H-benzimidazol-1-yl)benzoic acid, 3), were constructed from the same precursor, bbn. The bbn precursor remains unchanged in complex 1 but undergoes in situ reactions to give complexes 2 and 3 under different experimental conditions. Complex 1 is a 1D chain based on [CuCl] n chains and bbn ligands. Complex 2 has a 1D chain composed of [Zn2(tpb)2] subunits and tpb linkers. Complex 3 displays a twofold interpenetrating framework with dia topology. The results showed that the generation of different organic ligands from the same precursor via in situ reactions is a simple method for obtaining coordination polymer with diverse structures. The thermal stabilities and luminescent properties of selected compounds have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474

    Article  CAS  Google Scholar 

  2. Pan M, Lin XM, Li GB, Su CY (2011) Progress in the study of metal–organic materials applying naphthalene diimide (NDI) ligands. Coord Chem Rev 255:1921

    Article  CAS  Google Scholar 

  3. Cui YJ, Yue YF, Qian GD, Chen BL (2012) Luminescent functional metal–organic frameworks. Chem Rev 112:1126

    Article  CAS  Google Scholar 

  4. Du M, Li CP, Liu CS, Fang SM (2013) Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord Chem Rev 257:1282

    Article  CAS  Google Scholar 

  5. James SL (2003) Metal–organic frameworks. Chem Soc Rev 32:276

    Article  CAS  Google Scholar 

  6. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176

    Article  CAS  Google Scholar 

  7. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673

    Article  CAS  Google Scholar 

  8. Chen BL, Xiang SC, Qian GD (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115

    Article  CAS  Google Scholar 

  9. Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279:44

    Article  CAS  Google Scholar 

  10. Liao PQ, Zhou DD, Zhu AX, Jiang L, Lin RB, Zhang JP, Chen XM (2012) Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. J Am Chem Soc 134:17380

    Article  CAS  Google Scholar 

  11. Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, Bockrath B, Johnson JK (2004) Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 126:1308

    Article  CAS  Google Scholar 

  12. Lemonnier JF, Guenee L, Beuchat C, Wesolowski TA, Mukherjee P, Waldeck DH, Gogick KA, Petoud S, Piguet C (2011) Optimizing sensitization processes in dinuclear luminescent lanthanide oligomers: selection of rigid aromatic spacers. J Am Chem Soc 133:16219

    Article  CAS  Google Scholar 

  13. Dhakshinamoorthy A, Garcia H (2012) Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev 41:5262

    Article  CAS  Google Scholar 

  14. Wen ZZ, Wen XL, Cai SL, Zheng SR, Fan J, Zhang WG (2013) The construction of Cu(I)/Cu(II) coordination polymers based on pyrazine-carboxylate: structural diversity tuned by in situ hydrolysis reaction. CrystEngComm 15:5359

    Article  CAS  Google Scholar 

  15. Hu TP, Bi WH, Hu XQ, Zhao XL, Sun DF (2010) Construction of metal–organic frameworks with novel Zn8O13 SBU or chiral channels through in situ ligand reaction. Cryst Growth Des 10:3324

    Article  CAS  Google Scholar 

  16. Zhao H, Qu ZR, Ye HY, Xiong RG (2008) In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem Soc Rev 37:84

    Article  Google Scholar 

  17. Chen XM, Tong ML (2007) Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc Chem Res 40:162

    Article  Google Scholar 

  18. Zhang XM (2005) Hydro(solvo)thermal in situ ligand syntheses. Coord Chem Rev 249:1201

    Article  CAS  Google Scholar 

  19. Su CY, Goforth AM, Smith MD, Pellechia PJ, Zur Loye HC (2004) Exceptionally stable, hollow tubular metal–organic architectures: synthesis, characterization, and solid-state transformation study. J Am Chem Soc 126:3576

    Article  CAS  Google Scholar 

  20. Zhang XM, Tong ML, Chen XM (2002) Hydroxylation of N-heterocycle ligands observed in two unusual mixed-valence CuI/CuII complexes. Angew Chem Int Ed 41:1029

    Article  CAS  Google Scholar 

  21. Han L, Bu X, Zhang Q, Feng P (2006) Solvothermal in situ ligand synthesis through disulfide cleavage: 3D (3,4)-connected and 2D square-grid-type coordination polymers. Inorg Chem 45:5736

    Article  CAS  Google Scholar 

  22. Li GB, Liu JM, Yu ZQ, Wang W, Su CY (2009) Assembly of a 1D coordination polymer through in situ formation of a new ligand by double C–C coupling on CHCl3 under solvothermal conditions. Inorg Chem 48:8659

    Article  CAS  Google Scholar 

  23. Tan JB, Chen XY, Fan J, Zheng SR, Zhang WG (2013) Metal-directed syntheses of coordination polymers via in situ ligand reactions from the same precursor, 2-(1H-benzeimidazol-2-yl)-acetonitrile. Inorg Chem Commun 31:49

    Article  CAS  Google Scholar 

  24. Zheng SR, Cai SL, Fan J, Xiao TT, Zhang WG (2011) Three new complexes synthesized from an imidazole-based dicarboxylate ligand containing hydroxymethyl group. Inorg Chem Commun 14:1097

    Article  CAS  Google Scholar 

  25. Zheng SR, Cai SL, Pan M, Fan J, Xiao TT, Zhang WG (2011) The construction of coordination networks based on imidazole-based dicarboxylate ligand containing hydroxymethyl group. CrystEngComm 13:883

    Article  CAS  Google Scholar 

  26. Ye Q, Song YM, Wang GX, Chen K, Fu DW, Chan PWH, Zhu JS, Huang SP, Xiong RG (2006) Ferroelectric metal–organic framework with a high dielectric constant. J Am Chem Soc 128:6554

    Article  CAS  Google Scholar 

  27. Fu DW, Zhang W, Xiong RG (2008) Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand. Cryst Growth Des 8:3461

    Article  CAS  Google Scholar 

  28. Xiong RG, Xue X, Zhao H, You XZ, Abrahams BF, Xue ZL (2002) Novel, acentric metal–organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis. Angew Chem Int Ed 41:3800

    Article  CAS  Google Scholar 

  29. Jiang JJ, Li L, Yang T, Kuang DB, Wang W, Su CY (2009) Self-assembly of 2D Borromean networks through hydrogen-bonding recognition. Chem Commun 48:9262

    Google Scholar 

  30. Zheng SR, Yang QY, Yang R, Pan M, Cao R, Su CY (2009) Metal-directed assembly of coordination polymers with a multifunctional semirigid ligand containing pyridyl and benzimidazolyl donor groups. Cryst Growth Des 9:2341

    Article  CAS  Google Scholar 

  31. Li XP, Pan M, Zheng SR, Liu YR, He QT, Kang BS, Su CY (2007) Dimension increase via hydrogen bonding and weak coordination interactions from simple complexes of 2-(pyridyl)benzimidazole ligands. Cryst Growth Des 7:2481

    Article  CAS  Google Scholar 

  32. Bruker Analytical X-ray Systems, Inc. (2006) APEX2, version 2 user manual, M86-E01078, Madison, WI

  33. Sheldrick GM (2008) Acta Crystallogr Sect A: Found Crystallogr 64:112

    Article  CAS  Google Scholar 

  34. Tsai CY, Huang BH, Hsiao MW, Lin CC, Ko BT (2014) Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide. Inorg Chem 53:5109

    Article  CAS  Google Scholar 

  35. Jiang X, Yan G, Liao Y, Huang C, Xia H (2011) Synthesis, structure and topological analysis of a novel 3D Cu coordination polymer from a flexible ligand of 1,3,5-triazine-2,4,6-triamine hexaacetic acid and coligand ethylenediamine. Inorg Chem Commun 14:1924

    Article  CAS  Google Scholar 

  36. Jaremko L, Kirillov AM, Smolenski P, Pombeiro AJL (2009) Engineering coordination and supramolecular copper–organic networks by aqueous medium self-assembly with 1,3,5-triaza-7-phosphaadamantane (PTA). Cryst Growth Des 9:3006

    Article  CAS  Google Scholar 

  37. Jia C, Lin Q, Yuan W (2014) A series of coordination polymers constructed by a flexible tetracarboxylic acid: synthesis, structural diversity and luminescent properties. CrystEngComm 16:2508

    Article  CAS  Google Scholar 

  38. He YP, Tan YX, Zhang J (2013) Gas sorption, second-order nonlinear optics, and luminescence properties of a series of lanthanide–organic frameworks based on nanosized tris((4-carboxyl)phenylduryl)amine ligand. Inorg Chem 52:12758

    Article  CAS  Google Scholar 

  39. Park JH, Lee WR, Ryu DW, Lim KS, Jeong EA, Phang WJ, Koh EK, Hong CS (2012) Sulfate-incorporated Co(II) coordination frameworks with bis-imidazole bridging ligands constructed by covalent and noncovalent interactions. Cryst Growth Des 12:2691

    Article  CAS  Google Scholar 

  40. Wu Q, Esteghamatian M, Hu NX, Popovic Z, Enright G, Tao Y, D’Iorio M, Wang S (2000) Synthesis, structure, and electroluminescence of BR2q (R = Et, Ph, 2-naphthyl and q = 8-hydroxyquinolato). Chem Mater 12:79

    Article  CAS  Google Scholar 

  41. Zheng SR, Cai SL, Tan JB, Fan J, Zhang WG (2012) Spontaneous resolution of a coordination polymer containing stereogenic five-coordinate Zn(II) centers and achiral ligands with axially chiral conformation. CrystEngComm 14:6241

    Article  CAS  Google Scholar 

  42. Cai SL, Pan M, Zheng SR, Tan JB, Fan J, Zhang WG (2012) Anion-dependent assembly and solvent-mediated structural transformations of three Cd(II) coordination polymers based on 1H-imidazole-4-carboxylic acid. CrystEngComm 14:2308

    Article  CAS  Google Scholar 

  43. Yang Y, Du P, Ma JF, Kan WQ, Liu B, Yang J (2011) A series of metal–organic frameworks based on different salicylic derivatives and 1,1′-(1,4-butanediyl)bis(imidazole) ligand: syntheses, structures, and luminescent properties. Cryst Growth Des 11:5540

    Article  CAS  Google Scholar 

  44. Wang F, Jing X, Zheng B, Li G, Zeng G, Huo Q, Liu Y (2013) Four Cd-based metal–organic frameworks with structural varieties derived from the replacement of organic linkers. Cryst Growth Des 13:3522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for financial support of this work provided by the National Natural Science Foundation of P. R. China (Grant No. 21473062), China Postdoctoral Science Foundation (2014M552190), the Pearl River in Guangzhou City of Nova Science and Technology Special Funded Projects (No. 2014J2200047) and Guangdong Natural Science Foundation (10351064101000000), the Undergraduates’ Innovating Experimentation Project of Guangdong Province, the Undergraduates’ Innovating Experimentation Project of South China Normal University, and the Students’ Extracurricular Scientific Research Project of South China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Run Zheng or Tingting Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Hou, SS., Chu, Y. et al. Construction, crystal structures, and luminescence properties of three coordination polymers from the same precursor, 4-(1H-benzimidazol-1-yl)benzonitrile. Transition Met Chem 40, 699–706 (2015). https://doi.org/10.1007/s11243-015-9964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9964-8

Keywords

Navigation