Skip to main content
Log in

Projection–Subtraction X-ray Imaging Scheme for Studying Fast Fluid-Dynamics Processes in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Imaging of fluid flow at the pore scale in permeable media requires high spatial resolution to observe the topology of fluid in the pore system, along with high temporal resolution to study dynamic processes. The two most popular imaging techniques in modern experiments are microfluidic device imaging and X-ray micro-computed tomography, both having significant limitations as applied to the micro-level. In particular, microfluidic experiments examine flow in quasi-2D system of pores instead of natural 3D geometry of permeable media, whereas X-ray computed tomography (reconstruction of a 3D object representation from a set of 2D projections collected at different rotation angles) is considerably slow when studying fast pore-scale events. In this work, we present a novel approach to examination of local fluid dynamics by combining traditional fast X-ray microtomography and radiographic analysis of successive projections. After initial tomographic imaging of the 3D pore structure, we perform projection-wise analysis comparing differences between two successive projections. As a result, we obtain flow visualization with time resolution determined by the projection time, which is orders of magnitude faster than standard microtomographic scan time. To confirm the effectiveness of this approach, we investigate the pore-scale mechanisms of unstable water migration that occurs during gas-hydrate formation in coal media. We first show that the displacement of brine by methane gas due to cryogenic suction can lead to multiple snap-off events of brine flow in pores. Second, we study a fast local drainage process accompanied by the formation of the gradually swelling gas bubble in the center of the pore. The measured maximum interfacial velocity in our experiments varies from 1.3 to 5.2 mm/s. We also simulate this outflow process accompanied by the bubble expansion and estimate the average brine flow rate during brine-methane displacement.

Article Highlights

  • The proposed imaging technique increases the temporal resolution of micro-CT by several orders (equal to exposure time)

  • New technique allowed detecting multiple snap-off events on a subsecond timescale caused by cryosuction

  • Interfacial linear velocity during fluid-gas displacement was measured; the maximum value varied from 1 to 5 mm/s

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrew, M., Menke, H., Blunt, M.J., Bijeljic, B.: The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Media 110(1), 1–24 (2015)

    Article  CAS  Google Scholar 

  • Arbogast, T., Bryant, S., Dawson, C., Saaf, F., Wang, C., Wheeler, M.: Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation. J. Comput. Appl. Math. 74(1–2), 19–32 (1996)

    Article  MathSciNet  Google Scholar 

  • Armstrong, R.T., Berg, S.: Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 88(4), 043010 (2013)

    Article  ADS  Google Scholar 

  • Armstrong, R.T., Ott, H., Georgiadis, A., Rücker, M., Schwing, A., Berg, S.: Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow. Water Resour. Res. 50(12), 9162–9176 (2014)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Arshadi, M., Khishvand, M., Aghaei, A., Piri, M., Al-Muntasheri, G.: Pore-scale experimental investigation of two-phase flow through fractured porous media. Water Resour. Res. 54(5), 3602–3631 (2018)

    Article  ADS  CAS  Google Scholar 

  • Barenblatt, G.: Filtration of two nonmixing fluids in a homogeneous porous medium. Fluid Dyn. 6(5), 857–864 (1971)

    Article  ADS  Google Scholar 

  • Barenblatt, G., Patzek, T., Silin, D.: The mathematical model of non-equilibrium effects in water-oil displacement. In: Spe/doe Improved Oil Recovery Symposium. OnePetro (2002)

  • Basavaraj, M., Gupta, G., Naveen, K., Rudolph, V., Bali, R.: Local liquid holdups and hysteresis in a 2-D packed bed using X-ray radiography. AIChE J. 51(8), 2178–2189 (2005)

    Article  ADS  CAS  Google Scholar 

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bührer, M., Stampanoni, M., Rochet, X., Büchi, F., Eller, J., Marone, F.: High-numerical-aperture macroscope optics for time-resolved experiments. J. Synchrotron Radiat. 26(4), 1161–1172 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bultreys, T., Boone, M.A., Boone, M.N., De Schryver, T., Masschaele, B., Van Loo, D., Van Hoorebeke, L., Cnudde, V.: Real-time visualization of Haines jumps in sandstone with laboratory-based microcomputed tomography. Water Resour. Res. 51(10), 8668–8676 (2015)

    Article  ADS  Google Scholar 

  • Cinar, Y., Riaz, A.: Carbon dioxide sequestration in saline formations: part 2—review of multiphase flow modeling. J. Pet. Sci. Eng. 124, 381–398 (2014)

    Article  CAS  Google Scholar 

  • Fatemi, S.M., Sohrabi, M.: Multiphase flow and hysteresis phenomena in oil recovery by water alternating gas (WAG) injection. Ph.D. Thesis, Heriot-Watt University (2015)

  • Ferrari, A., Lunati, I.: Inertial effects during irreversible meniscus reconfiguration in angular pores. Adv. Water Resour. 74, 1–13 (2014)

    Article  ADS  Google Scholar 

  • Fokin, M.I., Nikitin, V.V., Duchkov, A.A.: Quantitative analysis of dynamic ct imaging of methane-hydrate formation with a hybrid machine learning approach. J. Synchrotron Radiat. 30 (2023), (in press)

  • García-Moreno, F., Kamm, P.H., Neu, T.R., Bülk, F., Noack, M.A., Wegener, M., von der Eltz, N., Schlepütz, C.M., Stampanoni, M., Banhart, J.: Tomoscopy: time-resolved tomography for dynamic processes in materials. Adv. Mater. 33(45), 2104659 (2021)

    Article  Google Scholar 

  • Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: Tomopy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21(5), 1188–1193 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Haines, W.: The hysteresis effect in capillary properties and the mode of moisture distribution associated therewith. J. Agric. Sci. 20, 7 (1929)

    Google Scholar 

  • Iskander, M.: Modelling with Transparent Soils: Visualizing Soil Structure Interaction and Multi Phase Flow, Non-intrusively. Springer, Berlin (2010)

    Book  Google Scholar 

  • Jailin, C., Etxegarai, M., Tudisco, E., Hall, S., Roux, S.: Fast tracking of fluid invasion using time-resolved neutron tomography. Transp. Porous Media 124(1), 117–135 (2018)

    Article  MathSciNet  Google Scholar 

  • Jailin, C., Roux, S., Sarrut, D., Rit, S.: Projection-based dynamic tomography. Phys. Med. Biol. 66(21), 215018 (2021)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C.: Capillary fingering: percolation and fractal dimension. Transp. Porous Media 4, 599–612 (1989)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337–353 (1983)

    Article  ADS  CAS  Google Scholar 

  • Maire, E., Le Bourlot, C., Adrien, J., Mortensen, A., Mokso, R.: 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fract. 200, 3–12 (2016)

    Article  CAS  Google Scholar 

  • Moebius, F., Or, D.: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377(1), 406–415 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mohanty, K.K., Davis, H.T., Scriven, L.: Physics of oil entrapment in water-wet rock. SPE Reserv. Eng. 2(01), 113–128 (1987)

    Article  CAS  Google Scholar 

  • Morrow, N.R.: Physics and thermodynamics of capillary action in porous media. Ind. Eng. Chem. 62(6), 32–56 (1970)

    Article  CAS  Google Scholar 

  • Nikitin, V.V., Fokin, M.I., Dugarov, G.A., Drobchik, A.N., De Andrade, V., Shevchenko, P.D., Manakov, A.Y., Duchkov, A.A.: Dynamic in situ imaging of methane hydrate formation in coal media. Fuel 298, 120699 (2021)

    Article  CAS  Google Scholar 

  • Royer, J.R., Corwin, E.I., Flior, A., Cordero, M.-L., Rivers, M.L., Eng, P.J., Jaeger, H.M.: Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1(3), 164–167 (2005)

    Article  CAS  Google Scholar 

  • Ruhlandt, A., Töpperwien, M., Krenkel, M., Mokso, R., Salditt, T.: Four dimensional material movies: high speed phase-contrast tomography by backprojection along dynamically curved paths. Sci. Rep. 7(1), 6487 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B.: Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 7(1), 1–13 (2017)

    Google Scholar 

  • Sun, Z., Santamarina, J.C.: Haines jumps: pore scale mechanisms. Phys. Rev. E 100(2), 023115 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sun, J., Li, Z., Aryana, S.A.: Examination of Haines jump in microfluidic experiments via evolution graphs and interface tracking. Fluids 7(8), 256 (2022)

    Article  ADS  CAS  Google Scholar 

  • Tallakstad, K.T., Knudsen, H.A., Ramstad, T., Løvoll, G., Måløy, K.J., Toussaint, R., Flekkøy, E.G.: Steady-state two-phase flow in porous media: statistics and transport properties. Phys. Rev. Lett. 102(7), 074502 (2009)

    Article  ADS  PubMed  Google Scholar 

  • Yamabe, H., Tsuji, T., Liang, Y., Matsuoka, T.: Lattice Boltzmann simulations of supercritical Co2–water drainage displacement in porous media: Co2 saturation and displacement mechanism. Environ. Sci. Technol. 49(1), 537–543 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Youssef, S., Deschamps, H., Dautriat, J., Rosenberg, E., Oughanem, R., Maire, E., Mokso, R.: 4D imaging of fluid flow dynamics in natural porous media with ultra-fast X-ray microtomography. In: Int. Symp. Core Anal, pp. 1–12 (2013)

  • Zacharoudiou, I., Boek, E.S.: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations. Adv. Water Resour. 92, 43–56 (2016)

    Article  ADS  Google Scholar 

  • Zacharoudiou, I., Boek, E.S., Crawshaw, J.: The impact of drainage displacement patterns and Haines jumps on Co2 storage efficiency. Sci. Rep. 8(1), 1–13 (2018)

    Article  CAS  Google Scholar 

  • Zhu, Y., Wu, Z., Hartley, W.D., Sietins, J.M., Williams, C.B., Hang, Z.Y.: Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Addit. Manuf. 34, 101183 (2020)

    CAS  Google Scholar 

Download references

Funding

This research was partly supported by Grant No. FWZZ-2022-0017. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National Laboratory and is based on research supported by the U.S. DOE Office of Science-Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by VN. Conceptualization and methodology were performed by VN, MF and AD. Material preparation and analysis were performed by IG under the revision of VN, MF and AD. The first draft of the manuscript was written by IG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivan Gorenkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorenkov, I., Nikitin, V., Fokin, M. et al. Projection–Subtraction X-ray Imaging Scheme for Studying Fast Fluid-Dynamics Processes in Porous Media. Transp Porous Med 151, 625–643 (2024). https://doi.org/10.1007/s11242-023-02055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-02055-8

Keywords

Navigation