Skip to main content
Log in

Electromagnetic/Acoustic Coupling in Partially Saturated Porous Rocks: An Extension of Pride’s Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, a set of equations governing the electromagnetic/acoustic coupling in partially saturated porous rocks in the low-frequency regime is derived. The equations are obtained by volume averaging of fundamental electromagnetic and mechanical equations valid at the pore-scale, following the same procedure as the one developed in the seminal paper of S. Pride for porous media where the fluid electrolyte fully saturates the pore space. In the present approach, it is assumed that the porous rock is partially saturated with a wetting-fluid electrolyte (water) and a non-wetting fluid (air). We also assume that an electromagnetic/mechanical coupling exists at the water–solid and water–air contact surfaces through adsorbed excess charges balanced by mobile ions in the water. The proposed approach is valid at the low-frequency regime, where capillary pressure perturbations can be safely neglected. The governing equations thus derived are similar to the ones obtained by Pride with the main difference that the various coefficients, including the electrokinetic coupling coefficient and electric conductivity appearing in the transport equations, are functions of the water saturation and depend on electrical and topological properties of both electric double layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albers, B.: Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model. Transp. Porous. Med. 80(B06209), 173–192 (2009). https://doi.org/10.1007/s11242-009-9360-y

    Article  Google Scholar 

  • Allègre, V., Lehmann, F., Ackerer, P., et al.: Modelling the streaming potential dependence on water content during drainage: 1. A 1D modelling of SP using finite element method. Geophys. J. Int. 189, 285–295 (2012). https://doi.org/10.1111/j.1365-246X.2012.05371.x

    Article  Google Scholar 

  • Allègre, V., Maineult, A., Lehmann, F., et al.: Self-potential response to drainage-imbibition cycles. Geophys. J. Int. 197(3), 1410–1424 (2014). https://doi.org/10.1093/gji/ggu055

    Article  Google Scholar 

  • Allégre, V., Jouniaux, L., Lehmann, F., et al.: Influence of water pressure dynamics and fluid flow on the streaming-potential response for unsaturated conditions. Geophys. Prospect. 63, 694–712 (2015). https://doi.org/10.1111/1365-2478.12206

    Article  Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. Dover Civil and Mechanical Engineering Series, Dover, (1988). https://books.google.com.ar/books?id=picSrNsgY8oC

  • Berryman, J.G., Thigpen, L., Chin, R.C.Y.: Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am. 84(1), 360–373 (1988). https://doi.org/10.1121/1.396938

    Article  Google Scholar 

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  Google Scholar 

  • Bordes, C., Garambois, S., Jouniaux, L., et al.: Seismoelectric measurements for the characterization of partially saturated porous media. In: AGU proceedings, American Geophysical Union, fall Meeting 2009, abstract #NS31B-1161 (2009)

  • Bordes, C., Sénéchal, P., Barrière, J., et al.: Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon. Geophys. J. Int. 200, 1317–1335 (2015)

    Article  Google Scholar 

  • Creux, P., Lachaise, J., Graciaa, A., et al.: Specific cation effects at the hydroxide-charged air/water interface. J. Phys. Chem. C 111, 3753–3755 (2007). https://doi.org/10.1021/jp070060s

    Article  Google Scholar 

  • Culligan, K., Wildenschild, D., Christensen, B., et al.: Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 40(W12), 413 (2004). https://doi.org/10.1029/2004WR003278

    Article  Google Scholar 

  • Demirel, Y.: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 2nd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Dupuis, J.C., Butler, K.E., Kepic, A.W.: Seismoelectric imaging of the vadose zone of a sand aquifer. Geophysics 72, A81–A85 (2007). https://doi.org/10.1190/1.2773780

    Article  Google Scholar 

  • Fiorentino, E., Toussaint, R., Jouniaux, L.: Two-phase lattice Boltzmann modelling of streaming potentials: influence of the gas-water interface on the electrokinetic coupling. Geophys. J. Int. 208, 1139–1156 (2017). https://doi.org/10.1093/gji/ggw417

    Article  Google Scholar 

  • Frenkel, J.: On the theory of seismic and electroseismic phenomena in a moist soil. J. Phys. 8(4), 230–241 (1944)

    Google Scholar 

  • Grobbe, N., Revil, A., Zhu, Z., et al. (eds.): Seismoelectric Exploration: Theory, Experiments, and Applications, Geophysical Monograph Series. Wiley, New Jersey (2020)

    Google Scholar 

  • Guichet, X., Jouniaux, L., Pozzi, J.P.: Streaming potential of a sand column in partial saturation conditions. J. Geophys. Res. 108(B3), 2141 (2003). https://doi.org/10.1029/2001JB001517

    Article  Google Scholar 

  • Haines, S.H., Pride, S.R.: Seismoelectric numerical modeling on a grid. Geophysics 71(6), 57–65 (2006)

    Article  Google Scholar 

  • Haines, S.S., Guitton, A., Biondi, B.: Seismoelectric data processing for surface surveys of shallow targets. Geophysics 72, G1–G8 (2007). https://doi.org/10.1190/1.2424542

    Article  Google Scholar 

  • Jackson, M.D.: Multiphase electrokinetic coupling: insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model. J. Geophys. Res. 115(B07), 206 (2010). https://doi.org/10.1029/2009JB007092

    Article  Google Scholar 

  • Jardani, A., Revil, A.: Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases. Geophys. J. Int. 202(2), 850–870 (2015)

    Article  Google Scholar 

  • Jougnot, D., Linde, N., Revil, A., et al.: Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone J. (2012). https://doi.org/10.2136/vzj2011.0086

    Article  Google Scholar 

  • Jouniaux, L., Zyserman, F.: A review on electrokinetically induced seismo-electrics, electro-seismics, and seismo-magnetics for Earth sciences. Solid Earth 7, 249–284 (2016). https://doi.org/10.5194/se-7-249-2016

    Article  Google Scholar 

  • Jouniaux, L., Allègre, V., Toussaint, R., et al.: Saturation dependence of the streaming potential coefficient, American Geophysical Union (AGU), chap 5, pp 73–100 (2020). https://doi.org/10.1002/9781119127383.ch5

  • Li, S., Pengra, D., Wong, P.: Onsager’s reciprocal relation and the hydraulic permeability of porous media. Phys. Rev. E 51(6), 5748–5751 (1995)

    Article  Google Scholar 

  • Linde, N., Jougnot, D., Revil, A., et al.: Streaming current generation in two-phase flow conditions. Geophys. Res. Lett. 34, LO3306 (2007). https://doi.org/10.1029/2006GL028878

    Article  Google Scholar 

  • Monachesi, L., Rubino, G., Rosas-Carbajal, M., et al.: An analytical study of seismoelectric signals produced by 1D mesoscopic heterogeneites. Geophys. J. Int. 201, 329–342 (2015)

    Article  Google Scholar 

  • Monachesi, L., Zyserman, F., Jouniaux, L.: An analytical solution to assess the SH seismoelectric response of the vadose zone. Geophys. J. Int. 213, 1999–2019 (2018)

    Article  Google Scholar 

  • Munch, F., Zyserman, F.: Detection of Non-Aqueous Phase Liquids Contamination by SH-TE Seismoelectrics: a Computational Feasibility Study. J. Appl. Geophys. (2016). https://doi.org/10.1016/j.jappgeo.2016.03.026

    Article  Google Scholar 

  • Neev, J., Yeatts, F.R.: Electrokinetic effects in fluid-saturated poroelastic media. Phys. Rev. B 40(13), 9135–9141 (1989)

    Article  Google Scholar 

  • Pengra, D.B., Li, S.X., Wong, P.Z.: Determination of rock properties by low frequency ac electrokinetics. J. Geophys. Res. 104(B12), 29.485-29.508 (1999)

    Article  Google Scholar 

  • Perrier, F., Morat, P.: Characterization of electrical daily variations induced by capillary flow in the non-saturated zone. Pure Appl. Geophys. 157, 785–810 (2000)

    Article  Google Scholar 

  • Pride, S.: Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B 50, 15,678-15,695 (1994)

    Article  Google Scholar 

  • Pride, S.R., Gangi, A.F., Morgan, F.D.: Deriving the equations of motions for porous isotropic media. J. Acoust. Soc. Am. 92(6), 3278–3290 (1992)

    Article  Google Scholar 

  • Rapetti, F., Rousseaux, G.: On quasi-static models hidden in Maxwell’s equations. Appl. Numer. Math. 79, 92–106 (2014)

    Article  Google Scholar 

  • Revil, A., Cerepi, A.: Streaming potentials in two-phase flow conditions. Geophys. Res. Lett. 31(L11), 605 (2004). https://doi.org/10.1029/2004GL020140

    Article  Google Scholar 

  • Revil, A., Linde, N., Cerepi, A., et al.: Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 313, 315–327 (2007)

    Article  Google Scholar 

  • Revil, A., Jardani, A., Sava, P., et al.: The Seismoelectric Method: Theory and Application. Wiley Blackwell, New Jersey (2015)

    Book  Google Scholar 

  • Rosas-Carbajal, M., Jougnot, D., Rubino, J., et al.: Seismoelectric Signals Producedc by Mesoscopic Heterogeneities. In: Grobbe, N., Revil, A., Zhu, Z., et al. (eds.) Seismoelectric Exploration: Theory, Experiments, and Applications, chap 9, pp. 249–287. Wiley, New Jersey (2020)

    Google Scholar 

  • Santos, J., Corberó, J., Douglas, J.: Static and dynamic behavior of a porous solid saturated by a two-phase fluid. JASA (1990). https://doi.org/10.1121/1.399439

    Article  Google Scholar 

  • Santos, J., Douglas, J., Corbero, J., et al.: A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am. 87(4), 1467–1488 (1990)

    Google Scholar 

  • Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13(6), 1066–1071 (1967)

    Article  Google Scholar 

  • Thompson, A.H., Gist, G.A.: Geophysical applications of electrokinetic conversion. Lead. Edge 12, 1169–1173 (1993)

    Article  Google Scholar 

  • Vinogradov, J., Jackson, M.: Multiphase streaming potential in sandstones saturated with gas/brine and oil/brine during drainage and imbibition. Geophys. Res. Lett. 38(L01), 301 (2011). https://doi.org/10.1029/2010GL045726

    Article  Google Scholar 

  • Warden, S., Garambois, S., Jouniaux, L., et al.: Seismoelectric wave propagation numerical modeling in partially saturated materials. Geophys. J. Int. 194, 1498–1513 (2013). https://doi.org/10.1093/gji/ggt198

    Article  Google Scholar 

  • Yang, J., Sato, T.: Analytical study of saturation effects on seismic vertical amplification of soil layer. Geotechnique 51(2), 161–165 (2001)

    Article  Google Scholar 

  • Zyserman, F., Gauzellino, P., Santos, J.: Finite element modeling of SHTE and PSVTM electroseismics. J. Appl. Geophys. 72, 79–91 (2010). https://doi.org/10.1016/j.jappgeo.2010.07.004

    Article  Google Scholar 

  • Zyserman, F., Jouniaux, L., Warden, S., et al.: Borehole seismoelectric logging using a shear-wave source: Possible application to CO\(_2\) disposal? Int. J. Greenhouse Gas Control 33, 82–102 (2015). https://doi.org/10.1016/j.ijggc.2014.12.009

    Article  Google Scholar 

  • Zyserman, F., Monachesi, L., Jouniaux, L.: Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone. Geophys. J. Int. 208(2), 918–935 (2017)

    Article  Google Scholar 

  • Zyserman, F.I., Monachesi, L.B., Thompson, A.H., et al.: Numerical modelling of passive electroseismic surveying. Geophys. J. Int. 230(3), 1467–1488 (2022). https://doi.org/10.1093/gji/ggac127

    Article  Google Scholar 

Download references

Acknowledgements

L.M. and F.Z. acknowledge support from FONCYT through grant PICT 2019-03220. F.Z. acknowledges support from CONICET through grant PIP 112-201501-00192. L.J., L.M. and F.Z. acknowledge support from CNRS/INSU through the PICS SEISMOFLUID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo B. Monachesi.

Ethics declarations

Conflict of interest

We have no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Mechanical Constitutive Relations in the Case of Stagnant Non-Wetting Fluid

Appendix A Mechanical Constitutive Relations in the Case of Stagnant Non-Wetting Fluid

If the non-wetting fluid is assumed to be stagnant (\(p_{nw}=0\), \(\varvec{w_{nw}}=0\) and \(p_{w}=-p_{c}\)) then the volume average of the stress–strain relations are taken without the consideration of Eq. (60). Following Pride et al. (1992), taking into account that the wetting-fluid occupies a volume \(s_{w}\phi\) we obtain

$$\begin{aligned}{} & {} \varvec{\tau _{B}}=(\tilde{K}_c \nabla \cdot \varvec{u_s} + \tilde{C} \nabla \cdot \varvec{w_{w}}) {\textbf {I}}+ G \left( \nabla \varvec{u_s} + \nabla \varvec{u_s}^T - \frac{2}{3} \nabla \cdot \varvec{u_s} {\textbf {I}}\right) , \ \ \ \ \ \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} p_c= \tilde{C} \nabla \cdot \varvec{u_s} + \tilde{M} \nabla \cdot \varvec{w_{w}}, \end{aligned}$$
(A2)

where

$$\begin{aligned}{} & {} \tilde{K}_{c} = \frac{K_{m} + s_{w} \phi K_{w} + \left[ (1-\phi )+2 s_w \phi \right] K_{s} \tilde{\Delta }}{1 + \Delta }, \end{aligned}$$
(A3)
$$\begin{aligned}{} & {} \tilde{C}=\frac{K_w + K_s \tilde{\Delta }}{1+\tilde{\Delta }}, \end{aligned}$$
(A4)
$$\begin{aligned}{} & {} \tilde{M}=\frac{1}{s_w\phi } \frac{K_w}{1+\tilde{\Delta }}. \end{aligned}$$
(A5)

In these expressions,

$$\begin{aligned} \tilde{\Delta } = \frac{K_w}{s_w \phi K_s^2 }\left[ (1-\phi ) K_s -K_m \right] . \end{aligned}$$
(A6)

From Eq. (A2), if the solid displacement is negligible, then taking the first time derivative we have \(\dot{p}_{c}= \tilde{M} \nabla \cdot \varvec{\dot{w}_{w}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monachesi, L.B., Zyserman, F.I., Jouniaux, L. et al. Electromagnetic/Acoustic Coupling in Partially Saturated Porous Rocks: An Extension of Pride’s Theory. Transp Porous Med 149, 785–815 (2023). https://doi.org/10.1007/s11242-023-01983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-01983-9

Keywords

Navigation