Skip to main content
Log in

Computational Simulation of Chemical Dissolution-Front Instability Problems Associated with Radially Divergent Flow in Fluid-Saturated Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper proposes a computational simulation procedure for simulating chemical dissolution-front instability problems, in which radially divergent flow is involved in fluid-saturated porous media. In the proposed computational simulation procedure, a combination of the finite element and finite difference methods is used to simulate a chemical dissolution-front instability problem involving radially divergent flow, while a new algorithm is used to apply a small perturbation to the problem. Particular attention is paid on simulating low-order modes of an unstable circular chemical dissolution-front propagating in a fluid-saturated porous medium, in which dissolvable materials only occupy a small part, so that the final porosity is remarkably smaller than unity when dissolvable materials are completely dissolved in the chemical dissolution system. To verify the proposed computational simulation procedure, analytical solutions for a benchmark chemical dissolution-front instability problem involving radially divergent flow are derived in a purely mathematical manner. The related computational simulation results have demonstrated that: (1) the proposed computational simulation procedure is correct and useful for simulating chemical dissolution-front instability problems, which are associated with both stable and unstable chemical dissolution systems involving radially divergent flow in fluid-saturated porous media; (2) the simulated shapes of the second-order, third-order and fifth-order modes associated with an unstable chemical dissolution-fronts are respectively an ellipse, a star of three angles and a star of five angles in the unstable chemical dissolution system involving radially divergent flow in the fluid-saturated porous medium; (3) although the heterogeneity of a porous medium can affect the propagation speed of a chemical dissolution-front, it does not affect the low-order mode shape in the unstable chemical dissolution system involving radially divergent flow in the fluid-saturated heterogeneous porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Awadh, S.M., Ali, K.K., Alazzawi, A.T.: Geochemical exploration using surveys of spring water, hydrocarbon and gas seepage, and geobotany for determining the surface extension of Abu-Jir Fault Zone in Iraq: a new way for determining geometrical shapes of computational simulation models. J. Geochem. Explor. 124, 218–229 (2013)

    Article  Google Scholar 

  • Chadam, J., Hoff, D., Merino, E., Ortoleva, P., Sen, A.: Reactive infiltration instabilities. IMA J. Appl. Math. 36, 207–221 (1986)

    Article  Google Scholar 

  • Chen, J.S., Liu, C.W.: Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport. Comput. Geosci. 28, 485–499 (2002)

    Article  Google Scholar 

  • Chen, J.S., Liu, C.W.: Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity. J. Contam. Hydrol. 72, 47–66 (2004)

    Article  Google Scholar 

  • Chen, J.S., Liu, C.W., Lai, G.X., Ni, C.F.: Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium. J. Hydrol. 373, 96–102 (2009)

    Article  Google Scholar 

  • Cohen, C.E., Ding, D., Quintard, M., Bazin, B.: From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization. Chem. Eng. Sci. 2008(63), 3088–3099 (2008)

    Article  Google Scholar 

  • Daccord, G., Touboul, E., Lenormand, R.: Carbonate acidizing: toward a quantitative model of the wormholing phenomenon. SPE Prod. Eng. 1, 63 (1989)

    Article  Google Scholar 

  • Daccord, G., Lenormand, R., Lietard, O.: Chemical dissolution of a porous medium by a reactive fluid-1: model for the wormholing. Chem. Eng. Sci. 48, 169 (1993)

    Article  Google Scholar 

  • Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44, 1933–1949 (1998)

    Article  Google Scholar 

  • Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  Google Scholar 

  • Grodzki, P., Szymczak, P.: Reactive-infiltration instability in radial geometry: from dissolution fingers to star patterns. Phys. Rev. E 100, 033108 (2019)

    Article  Google Scholar 

  • Hinch, E.J., Bhatt, B.S.: Stability of an acid front moving through porous rock. J. Fluid Mech. 212, 279–288 (1990)

    Article  Google Scholar 

  • Imhoff, P.T., Miller, C.T.: Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 1. Model predictions. Water Resour. Res. 32, 1919–1928 (1996)

    Article  Google Scholar 

  • Imhoff, P.T., Thyrum, G.P., Miller, C.T.: Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 2. Experimental observations. Water Resour. Res. 32, 1929–1942 (1996)

    Article  Google Scholar 

  • Imhoff, P.T., Mann, A.S., Mercer, M., Fitzpatrick, M.: Scaling DNAPL migration from the laboratory to the field. J. Contam. Hydrol. 64, 73–92 (2003)

    Article  Google Scholar 

  • Kalia, N., Balakotaiah, V.: Modeling and analysis of wormhole formation in reactive dissolution in carbonate rocks. Chem. Eng. Sci. 62, 919–928 (2007)

    Article  Google Scholar 

  • Kalia, N., Balakotaiah, V.: Effect of medium heterogeneities on reactive dissolution of carbonates. Chem. Eng. Sci. 64, 376–390 (2009)

    Article  Google Scholar 

  • Lai, K.H., Chen, J.S., Liu, C.W., Yang, S.H., Steefel, C.: Effect of medium permeability anisotropy on the morphological evolution of two non-uniformities in a geochemical system. J. Hydrol. 533, 224–233 (2016)

    Article  Google Scholar 

  • Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York (1998)

    Google Scholar 

  • Liu, J., Pereira, G.G., Regenauer-Lieb, K.: From characterisation of pore-structures to simulations of pore-scale fluid flow and the upscaling of permeability using microtomography: a case study of heterogeneous carbonates. J. Geochem. Explor. 144, 84–96 (2014)

    Article  Google Scholar 

  • Maji, R., Sudicky, E.A.: Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. J. Contam. Hydrol. 102, 105–119 (2008)

    Article  Google Scholar 

  • Ormond, A., Ortoleva, P.: Numerical modeling of reaction-induced cavities in a porous rock. J. Geophys. Res. 105, 16737–16747 (2000)

    Article  Google Scholar 

  • Ortoleva, P., Chadam, J., Merino, E., Sen, A.: Geochemical self-organization II: the reactive-infiltration instability. Am. J. Sci. 287, 1008–1040 (1987)

    Article  Google Scholar 

  • Panga, M.K.R., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51, 3231–3248 (2005)

    Article  Google Scholar 

  • Qin, F., Wei, C., Li, H.: Current research in remediation of soils contaminated by heavy metals. Environ. Sci. Technol. 38, 199–208 (2015)

    Google Scholar 

  • Schmidt Mumm, A., Brugger, J., Zhao, C., Schacht, U.: Fluids in geological processes: the present state and future outlook. J. Geochem. Explor. 106, 1–7 (2010)

    Article  Google Scholar 

  • Sherwood, J.D.: Stability of a plane reaction front in a porous medium. Chem. Eng. Sci. 42, 1823–1829 (1987)

    Article  Google Scholar 

  • Soerens, T.S., Sabatini, D.A., Harwell, J.H.: Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution. Water Resour. Res. 34, 1657–1673 (1998)

    Article  Google Scholar 

  • Zhang, C., Werth, C.J., Webb, A.G.: Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging. Environ. Sci. Technol. 41, 3672–3678 (2007)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A., Hornby, P., Peng, S.: Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transp. Porous Media 73, 75–94 (2008a)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Hornby, P., Ord, A., Peng, S., Liu, L.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Meth. Geomech. 32, 1107–1130 (2008b)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous rocks. Transp. Porous Media 82, 317–335 (2010a)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Theoretical analyses of the effects of solute dispersion on chemical-dissolution front instability in fluid-saturated porous media. Transp. Porous Media 84, 629–653 (2010b)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Regenauer-Lieb, K., Ord, A.: Computational simulation for the morphological evolution of nonaqueous-phase-liquid dissolution fronts in two-dimensional fluid-saturated porous media. Comput. Geosci. 15, 167–183 (2011)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Effects of medium permeability anisotropy on chemical-dissolution front instability in fluid-saturated porous rocks. Transp. Porous Media 99, 119–143 (2013a)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Theoretical analyses of acidization-dissolution front instability in fluid-saturated carbonate rocks. Int. J. Numer. Anal. Meth. Geomech. 37, 2084–2105 (2013b)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Mixed solutions of mathematical and numerical methods for reactive mass transport problems of two different porosity regions in fluid-saturated porous media. J. Hydrol. 580, 124145 (2020)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Effects of mathematical transforms on theoretical analysis and computational simulation of chemical dissolution-front instability within fluid-saturated porous media. J. Hydrol. 600, 126531 (2021)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Two different computational schemes for solving chemical dissolution-front instability problems in fluid-saturated porous media. Transp. Porous Media. 145, 323–346 (2022a)

    Article  Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: Two different mathematical schemes for solving chemical dissolution-front instability problems in fluid-saturated rocks. Sci. China Technol. Sci. 65, 147–156 (2022b)

    Google Scholar 

  • Zhao, C., Hobbs, B.E., Ord, A.: A novel algorithm for implementing perturbations in computational simulations of chemical dissolution-front instability problems within fluid-saturated porous media. Int. J. Numer. Anal. Meth. Geomech. 46, 2115–2137 (2022c)

    Article  Google Scholar 

  • Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, London (1977)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos: 42030809 and 72088101). The authors express sincere thanks to the anonymous referees for their valuable comments, which led to a significant improvement over an early version of the paper.

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant Nos: 42030809 and 72088101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbin Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Analytical Perturbation Solutions of the Considered Problem

Appendix: Derivation of Analytical Perturbation Solutions of the Considered Problem

According to linear stability theory (Chadam et al. 1986; Zhao et al. 2008b, 2013b), total solutions of the considered problem can be written as a summation of base solutions and perturbation solutions in the following forms:

$$S(\overline{r},\,\theta ,\,\overline{t}) = \overline{R}_{S} + \delta F(\overline{t})\cos (\overline{m}\theta )$$
(51)
$$\overline{p}_{uT} (\overline{r},\,\theta ,\,\overline{t}) = \overline{p}_{uB} (\overline{r},\,\overline{t}) + \delta \,\hat{p}_{u} (\overline{r})F(\overline{t})\cos (\overline{m}\theta )$$
(52)
$$\overline{p}_{dT} (\overline{r},\,\theta ,\,\overline{t}) = \overline{p}_{dB} (\overline{r},\,\overline{t}) + \delta \,\hat{p}_{d} (\overline{r})F(\overline{t})\cos (\overline{m}\theta )$$
(53)
$$\overline{C}_{uT} (\overline{r},\,\theta ,\,\overline{t}) = \overline{C}_{uB} (\overline{r},\overline{t}) + \delta \,\hat{C}_{u} (\overline{r})F(\overline{t})\cos (\overline{m}\theta )$$
(54)

where \(\overline{C}_{uT}\) is the total solution for the dimensionless acid concentration in the upstream regions; \(\overline{p}_{dT}\) and \(\overline{p}_{uT}\) are the total solutions for the dimensionless pore-fluid pressures in the downstream and upstream regions; \(\hat{C}_{u}\) is the perturbation solution for the dimensionless acid concentration in the upstream region; \(\hat{p}_{d}\) and \(\hat{p}_{u}\) are the perturbation solutions for the dimensionless pore-fluid pressures in the downstream and upstream regions; \(F(\overline{t})\) is a dimensionless time-dependent function (e.g. \(F(\overline{t}) = e^{{\overline{\omega }\overline{t}}}\)) involved in the applied perturbation;\(\,\overline{t}\) is the dimensionless time; \(\overline{m}\) is the dimensionless wavenumber of the applied perturbation; \(\overline{\omega }\) is the dimensionless growth rate of the applied perturbation; \(\delta\) is the amplitude of the applied perturbation and \(\delta < < 1\) in the linear stability analysis.

Equations (51) to (54) indicate that if the considered chemical dissolution system is in a stable state, then the applied small perturbation decays with time, so that the total solutions of the considered problem are equal to the base analytical solutions of the considered problem. In this case, the considered chemical dissolution system can be served as a benchmark problem, which can be used to verify the computational simulation procedure for solving chemical dissolution-front instability problems involving radially divergent flow in fluid-saturated porous media. This is the first purpose of deriving analytical solutions in this study.

Substitution of Eqs. (51) to (54) into Eqs. (32) and (33) yields the first-order dimensionless perturbation equations of the chemical dissolution-front instability problem associated with radially divergent flow as follows:

$$\overline{r}^{2} \frac{{\partial^{2} \hat{p}_{u} }}{{\partial \overline{r}^{2} }} + \overline{r}\frac{{\partial \hat{p}_{u} }}{{\partial \overline{r}}} - \overline{m}^{2} \hat{p}_{u} = 0$$
(55)
$$\frac{{\partial^{2} \hat{C}_{u} }}{{\partial \overline{r}^{2} }} + (1 - \overline{R}_{0} Zh)\frac{1}{{\overline{r}}}\frac{{\partial \hat{C}_{u} }}{{\partial \overline{r}}} - \overline{m}^{2} \frac{1}{{\overline{r}^{2} }}\hat{C}_{u} + \frac{{\partial \overline{C}_{uB} }}{{\partial \overline{r}}}\frac{{\partial \hat{p}_{u} }}{{\partial \overline{r}}} = 0\quad \left( {{\text{In }}\,{\text{the}}\,{\text{ upstream }}\,{\text{region}}} \right)$$
(56)
$$\overline{r}^{2} \frac{{\partial^{2} \hat{p}_{d} }}{{\partial \overline{r}^{2} }} + \overline{r}\frac{{\partial \hat{p}_{d} }}{{\partial \overline{r}}} - \overline{m}^{2} \hat{p}_{d} = 0\quad \left( {{\text{In}}\,{\text{ the}}\,{\text{ downstream }}\,{\text{region}}} \right)$$
(57)

For the first-order perturbation equations (i.e. Eqs. 55 to 57), the corresponding boundary conditions can be written as follows:

$$\hat{C}_{u} = 0,\quad \frac{{\partial \hat{p}_{u} }}{{\partial \overline{r}}} = 0,\quad \left( {\overline{r} = \overline{R}_{0} } \right)$$
(58)
$$\frac{{\partial \hat{p}_{d} }}{{\partial \overline{r}}} = 0\quad \left( {\overline{r} \to \infty } \right)$$
(59)

The interface conditions associated with the first-order perturbation equations can be expressed as:

$$\hat{C}_{u} (\overline{R}_{S} ) + \frac{{\partial \overline{C}_{uB} (\overline{R}_{S} )}}{{\partial \overline{r}}} = 0,\quad \hat{p}_{u} (\overline{R}_{S} ) + \frac{{\partial \overline{p}_{uB} (\overline{R}_{S} )}}{{\partial \overline{r}}} = \hat{p}_{d} (\overline{R}_{S} ) + \frac{{\partial \overline{p}_{dB} (\overline{R}_{S} )}}{{\partial \overline{r}}}\quad \left( {{\text{at}}\,\,\,\overline{r} = \overline{R}_{S} + \Delta \overline{r}} \right)$$
(60)
$$\frac{{\partial \hat{C}_{u} (\overline{R}_{S} )}}{{\partial \overline{r}}} + \frac{{\partial \overline{C}_{uB}^{2} (\overline{R}_{S} )}}{{\partial \overline{r}^{2} }} = - \overline{\omega }\varepsilon (\phi_{f} - \phi_{0} ),$$
$$\frac{{\partial \hat{p}_{u} (\overline{R}_{S} )}}{{\partial \overline{r}}} + \frac{{\partial^{2} \overline{p}_{uB} (\overline{R}_{S} )}}{{\partial \overline{r}^{2} }} = \psi^{*} (\phi_{0} )\left[ {\frac{{\partial \hat{p}_{d} (\overline{R}_{S} )}}{{\partial \overline{r}}} + \frac{{\partial^{2} \overline{p}_{dB} (\overline{R}_{S} )}}{{\partial \overline{r}^{2} }}} \right]\quad \left( {{\text{at}}\quad \overline{r} = \overline{R}_{S} + \Delta \overline{r}} \right)$$
(61)

where \(\Delta \overline{r} = \delta F(\overline{t})\cos (\overline{m}\theta )\) and \(\overline{\omega }\) is the dimensionless growth rate of the applied perturbation.

After Eqs. (55) and (57) are solved, the analytical perturbation solution for the dimensionless pore-fluid pressure can be written as:

$$\hat{p}_{u} (\overline{r}) = A_{1} \overline{r}^{{\overline{m}}} + A_{2} \overline{r}^{{ - \overline{m}}} \quad \left( {\overline{R}_{0} \le \overline{r} \le \overline{R}_{S} } \right)$$
(62)
$$\hat{p}_{d} (\overline{r}) = B_{1} \overline{r}^{{ - \overline{m}}} \quad \left( {\overline{R}_{S} \le \overline{r}} \right)$$
(63)

where

$$A_{1} = - \frac{{[1 - \psi^{*} (\phi_{0} )]\overline{R}_{0} Zh\overline{R}_{S}^{{\overline{m} - 1}} }}{{\psi^{*} (\phi_{0} )(\overline{R}_{S}^{{2\overline{m}}} + \overline{R}_{0}^{{2\overline{m}}} ) + (\overline{R}_{S}^{{2\overline{m}}} - \overline{R}_{0}^{{2\overline{m}}} )}}$$
(64)
$$A_{2} = A_{1} \overline{R}_{0}^{{2\overline{m}}}$$
(65)
$$B_{1} = \frac{{(\overline{R}_{S}^{{2\overline{m}}} - \overline{R}_{0}^{{2\overline{m}}} )[1 - \psi^{*} (\phi_{0} )]\overline{R}_{0} Zh\overline{R}_{S}^{{\overline{m} - 1}} }}{{\psi^{*} (\phi_{0} )[\psi^{*} (\phi_{0} )(\overline{R}_{S}^{{2\overline{m}}} + \overline{R}_{0}^{{2\overline{m}}} ) + (\overline{R}_{S}^{{2\overline{m}}} - \overline{R}_{0}^{{2\overline{m}}} )]}}$$
(66)

After Equation (56) is solved, the analytical perturbation solution for the dimensionless acid concentration of the considered problem can be expressed as follows:

$$\hat{C}_{u} = D_{1} \overline{r}^{{\alpha_{1} }} + D_{2} \overline{r}^{{\alpha_{2} }} + \frac{{E_{1} }}{{\overline{m}\overline{R}_{0} Zh}}\left[ {\overline{r}^{{(\overline{m} + \overline{R}_{0} Zh)}} + \overline{R}_{0}^{{2\overline{m}}} \overline{r}^{{( - \overline{m} + \overline{R}_{0} Zh)}} } \right]$$
(67)

where

$$\alpha_{1} = \frac{{\overline{R}_{0} Zh + \sqrt {(\overline{R}_{0} Zh)^{2} + 4\overline{m}^{2} } }}{2},\quad \alpha_{2} = \frac{{\overline{R}_{0} Zh - \sqrt {(\overline{R}_{0} Zh)^{2} + 4\overline{m}^{2} } }}{2}$$
(68)
$$E_{1} = \frac{{\overline{R}_{0} ZhA_{1} \overline{m}}}{{\overline{R}_{S}^{{\overline{R}_{0} Zh}} - \overline{R}_{0}^{{\overline{R}_{0} Zh}} }}$$
(69)
$$\begin{aligned} D_{2} & = \frac{{E_{1} }}{{\overline{m}\overline{R}_{0} Zh(\overline{R}_{0}^{{\alpha_{2} }} \overline{R}_{S}^{{\alpha_{1} }} - \overline{R}_{0}^{{\alpha_{1} }} \overline{R}_{S}^{{\alpha_{2} }} )}}\left[ {\overline{R}_{S}^{{( - \overline{m} + \overline{R}_{0} Zh)}} (\overline{R}_{S}^{{2\overline{m}}} + \overline{R}_{0}^{{2\overline{m}}} )\overline{R}_{0}^{{\alpha_{1} }} - 2\overline{R}_{0}^{{(\overline{m} + \overline{R}_{0} Zh)}} \overline{R}_{S}^{{\alpha_{1} }} } \right] \\ & \quad - \frac{1}{{(\overline{R}_{0}^{{\alpha_{2} }} \overline{R}_{S}^{{\alpha_{1} }} - \overline{R}_{0}^{{\alpha_{1} }} \overline{R}_{S}^{{\alpha_{2} }} )}}\left[ {\frac{{\overline{R}_{0} Zh\overline{R}_{S}^{{(\overline{R}_{0} Zh - 1)}} }}{{\overline{R}_{S}^{{(\overline{R}_{0} Zh)}} - \overline{R}_{0}^{{(\overline{R}_{0} Zh)}} }}} \right] \\ \end{aligned}$$
(70)
$$D_{1} = - D_{2} \overline{R}_{0}^{{\alpha_{2} - \alpha_{1} }} - \frac{{2E_{1} }}{{\overline{m}\overline{R}_{0} Zh}}\overline{R}_{0}^{{(\overline{m} + \overline{R}_{0} Zh) - \alpha_{1} }}$$
(71)

Consequently, the following dimensionless growth rate of the applied perturbation to the considered chemical dissolution-front instability problem associated with radially divergent flow in the fluid-saturated porous medium can be written as:

$$\begin{aligned} \overline{\omega } & = - \frac{1}{{\varepsilon (\phi_{f} - \phi_{0} )}}\left\{ {D_{1} \alpha_{1} \overline{R}_{S}^{{\alpha_{1} - 1}} + D_{2} \alpha_{2} \overline{R}_{S}^{{\alpha_{2} - 1}} } \right. \\ & \quad + \frac{{E_{1} \overline{R}_{S}^{{ - \overline{m} + \overline{R}_{0} Zh - 1}} }}{{\overline{m}\overline{R}_{0} Zh}}\left[ {(\overline{m} + \overline{R}_{0} Zh)\overline{R}_{S}^{{(2\overline{m})}} + ( - \overline{m} + \overline{R}_{0} Zh)\overline{R}_{0}^{{(2\overline{m})}} } \right] \\ & \quad \left. { - \frac{{\overline{R}_{0} Zh(\overline{R}_{0} Zh - 1)\overline{R}_{S}^{{(\overline{R}_{0} Zh - 2)}} }}{{\overline{R}_{S}^{{(\overline{R}_{0} Zh)}} - \overline{R}_{0}^{{(\overline{R}_{0} Zh)}} }}} \right\} \\ \end{aligned}$$
(72)

If \(\overline{\omega } = 0\), then the characteristic equation for the critical Peclet number of the considered problem can be written as:

$$\begin{aligned} & D_{1} \alpha_{1} \overline{R}_{S}^{{\alpha_{1} - 1}} + D_{2} \alpha_{2} \overline{R}_{S}^{{\alpha_{2} - 1}} \\ & \quad + \frac{{E_{1} \overline{R}_{S}^{{ - \overline{m} + pe - 1}} }}{{\overline{m}Pe}}\left[ {(\overline{m} + Pe)\overline{R}_{S}^{{(2\overline{m})}} + ( - \overline{m} + Pe)\overline{R}_{0}^{{(2\overline{m})}} } \right] \\ & \quad - \frac{{Pe(Pe - 1)\overline{R}_{S}^{(Pe - 2)} }}{{\overline{R}_{S}^{(Pe)} - \overline{R}_{0}^{(Pe)} }} = 0 \\ \end{aligned}$$
(73)

where \(Pe\) is the Peclet number of the chemical dissolution system and can be expressed as:

$$Pe = \overline{R}_{0} Zh = \frac{{V_{in} R_{0} }}{{\phi_{f} D}}$$
(74)

Solution of Eq. (73) yields the critical Zhao number, which can be used to assess whether a chemical system is in a stable state or in an unstable state.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Hobbs, B.E. & Ord, A. Computational Simulation of Chemical Dissolution-Front Instability Problems Associated with Radially Divergent Flow in Fluid-Saturated Porous Media. Transp Porous Med 148, 355–382 (2023). https://doi.org/10.1007/s11242-023-01945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-01945-1

Keywords

Navigation