Skip to main content
Log in

Effects of Intra-REV Pore Distribution Modeling in the Flow of Non-Newtonian Fluids in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

A Correction to this article was published on 08 March 2024

This article has been updated

Abstract

Motivated by some discrepancies in the comparison between the rheometric viscosity function of shear-thinning fluids and the apparent Darcy viscosity function obtained in porous media simulations/experiments, we propose a model for the flow in porous media with a non-uniform pore distribution in the pore scale, i.e., inside the Representative Elementary Volume (REV). Since different pore sizes inside the REV would lead to different characteristic shear rates, the heterogeneity of the pores in the elementary scale can be responsible for the mentioned discrepancies. Indeed, simulations in a plug of a porous medium have shown that the apparent viscosity function decreases as we increase the standard deviation distribution of the diameter of idealized cylindrical pores. The ratio of the mobility of the heterogeneous pore distribution to the mobility of the homogeneous one is plotted as a function of the power-law index of the non-Newtonian viscosity function. The dimensionless analysis has shown to be a powerful tool in the investigation, collapsing the information in several cases. In addition, our results reveal that a non-uniform pore size distribution can be an important source of the discrepancy between the viscosity function obtained in a rheometric device and the one obtained from the Darcy equation, as reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  • Algive, L., Békri, S., Nader, F.H., Lerat, O., Vizika, O.: Impact of diagenetic alterations on the petrophysical and multiphase flow properties of carbonate rocks using a reactive pore network modeling approach. Oil Gas Sci. Technol.-Rev. d’IFP Energ. Nouvelles 67(1), 147 (2012)

    Article  CAS  Google Scholar 

  • Alleman, D., Qi, Q., Keck, R.: In: International symposium on oilfield chemistry. OnePetro (2003)

  • Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209 (1976)

    Article  MathSciNet  Google Scholar 

  • Balhoff, M.T., Thompson, K.E.: Modeling the steady flow of yield-stress fluids in packed beds. AIChE J. 50(12), 3034 (2004)

    Article  ADS  CAS  Google Scholar 

  • Balhoff, M., Sanchez-Rivera, D., Kwok, A., Mehmani, Y., Prodanović, M.: Numerical algorithms for network modeling of yield stress and other non-Newtonian fluids in porous media. Transp. Porous Media 93(3), 363 (2012)

    Article  MathSciNet  CAS  Google Scholar 

  • Barboza Júnior, R.P., Scwalbert, M.P., Favero, J.L., Dias, R.A.C., Moraes, A.O.S., Silva, L.F.L.R., Thompson, R.L.: Modeling and simulation of the carbonate reactive-dissolution process by viscoelastic-surfactant-based acid. J. Pet. Sci. Eng. 215(110595), 1 (2022)

    Google Scholar 

  • Berg, S., van Wunnik, J.: Shear rate determination from pore-scale flow fields. Transp. Porous Media 117(2), 229 (2017)

    Article  MathSciNet  CAS  Google Scholar 

  • Cannella, W., Huh, C., Seright, R.: In: SPE annual technical conference and exhibition. OnePetro (1988)

  • Chang, F., Qu, Q., Frenier, W.: et al., In: SPE international symposium on oilfield chemistry. Society of Petroleum Engineers (2001)

  • Daccord, G., Touboul, E., Lenormand, R.: Carbonate acidizing: toward a quantitative model of the wormholing phenomenon. SPE Prod. Eng. 4(01), 63 (1989)

    Article  CAS  Google Scholar 

  • de Castro, A.R., Agnaou, M.: Numerical investigation of the apparent viscosity dependence on darcy velocity during the flow of shear-thinning fluids in porous media. Transp. Porous Media 129(1), 93 (2019)

    Article  MathSciNet  Google Scholar 

  • Eberhard, U., Seybold, H.J., Floriancic, M., Bertsch, P., Jiménez-Martínez, J., Andrade, J.S., Jr., Holzner, M.: Determination of the effective viscosity of non-Newtonian fluids flowing through porous media. Front. Phys. 7, 71 (2019)

    Article  Google Scholar 

  • Fletcher, A., Flew, S., Lamb, S., Lund, T., Bjornestad, E., Stavland, A., Gjovikli, N.: In: SPE International Symposium on Oilfield Chemistry. OnePetro (1991)

  • Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44(9), 1933 (1998)

    Article  ADS  CAS  Google Scholar 

  • Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., QUINTARD, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213 (2002)

    Article  ADS  CAS  Google Scholar 

  • Hauswirth, S.C., Bowers, C.A., Fowler, C.P., Schultz, P.B., Hauswirth, A.D., Weigand, T., Miller, C.T.: Modeling cross model non-Newtonian fluid flow in porous media. J. Contam. Hydrol. 235, 103708 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Hoefner, M., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45 (1988)

    Article  ADS  CAS  Google Scholar 

  • Jasak, H.: OpenFOAM: open source CFD in research and industry. Int. J. Nav. Archit. Ocean Eng. 1(2), 89 (2009)

    Google Scholar 

  • Kalia, N., Balakotaiah, V.: Effect of medium heterogeneities on reactive dissolution of carbonates. Chem. Eng. Sci. 64(2), 376 (2009)

    Article  CAS  Google Scholar 

  • Kim, D., Peters, C.A., Lindquist, W.: Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers. Water Resour. Res. 47(1) (2011)

  • Kim, D., Lindquist, W.B.: Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions. Water Resour. Res. 49(11), 7575 (2013)

    Article  CAS  Google Scholar 

  • Li, L., Peters, C.A., Celia, M.A.: Effects of mineral spatial distribution on reaction rates in porous media. Water Resour. Res. 43(1) (2007)

  • Li, L., Peters, C.A., Celia, M.A.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. water Resour. 29(9), 1351 (2006)

    Article  ADS  CAS  Google Scholar 

  • Liu, X., Ormond, A., Bartko, K., Ying, L., Ortoleva, P.: A geochemical reaction-transport simulator for matrix acidizing analysis and design. J. Pet. Sci. Eng. 17(1–2), 181 (1997)

    Article  CAS  Google Scholar 

  • Lopez, X., Valvatne, P.H., Blunt, M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Maheshwari, P., Ratnakar, R.R., Kalia, N., Balakotaiah, V.: 3-D Simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 90, 258 (2013)

    Article  CAS  Google Scholar 

  • Maheshwari, P., Ratnakar, R., Kalia, N., Balakotaiah, V.: 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 90, 258 (2013)

    Article  CAS  Google Scholar 

  • Motta, A.B.G., Thompson, R.L., Favero, J.L., Dias, R.A.C., Silva, L.F.L.R., Costa, F.G., Schwalbert, M.P.: Rheological effects on the acidizing process in carbonate reservoirs. J. Pet. Sci. Eng. 207, 109122 (2021)

    Article  CAS  Google Scholar 

  • Nasr-El-Din, H.A., Chesson, J.B., Cawiezel, K.E., De Vine, C.S.: In: SPE Annual Technical Conference and Exhibition. OnePetro (2006)

  • Nogues, J.P., Fitts, J.P., Celia, M.A., Peters, C.A.: Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 49(9), 6006 (2013)

    Article  ADS  CAS  Google Scholar 

  • Panga, M.K.R., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51, 3231 (2005)

    Article  ADS  CAS  Google Scholar 

  • Ratnakar, R.R., Kalia, N., Balakotaiah, V.: Modeling, analysis and simulation of wormhole formation in carbonate rocks with in situ cross-linked acids. Chem. Eng. Sci. 90, 179 (2013)

    Article  CAS  Google Scholar 

  • Shah, C., Yortsos, Y.: Aspects of flow of power-law fluids in porous media. AIChE J. 41(5), 1099 (1995)

    Article  ADS  CAS  Google Scholar 

  • Shende, T., Niasar, V., Babaei, M.: Upscaling non-Newtonian rheological fluid properties from pore-scale to Darcy’s scale. Chem. Eng. Sci. 239, 116638 (2021)

    Article  CAS  Google Scholar 

  • Siddiqui, S., Nasr-El-Din, H.A., Khamees, A.A.: Wormhole initiation and propagation of emulsified acid in carbonate cores using computerized tomography. J. Pet. Sci. Eng. 54(3–4), 93 (2006)

    Article  CAS  Google Scholar 

  • Sochi, T.: Modelling the flow of yield-stress fluids in porous media. Transp. Porous Media 85(2), 489 (2010)

    Article  Google Scholar 

  • Sorbie, K., Clifford, P., Jones, E.: The rheology of pseudoplastic fluids in porous media using network modeling. J. Colloid Interface Sci. 130(2), 508 (1989)

    Article  ADS  CAS  Google Scholar 

  • Stavland, A., Jonsbråten, H., Lohne, A., Moen, A., Giske, N.H.: In: SPE EUROPEC/EAGE annual conference and exhibition. OnePetro (2010)

  • Thompson, R.L., Oishi, C.M.: Reynolds and Weissenberg numbers in viscoelastic flows. J. Non-Newtonian Fluid Mech. 292(104550), 1 (2021)

    MathSciNet  Google Scholar 

  • Thompson, R.L., Soares, E.J.: Viscoplastic dimensionless numbers. J. Non-Newtonian Fluid Mech. 238, 57 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  • Wang, Y., Hill, A., Schechter, R.: In: SPE Annual Technical Conference and Exhibition. OnePetro (1993)

  • Willhite, G.P., Uhl, J.: In: Water-Soluble Polymers for Petroleum Recovery, pp. 101–119, Springer (1988)

  • Zhang, M., Prodanović, M., Mirabolghasemi, M., Zhao, J.: 3D microscale flow simulation of shear-thinning fluids in a rough fracture. Transp. Porous Media 128(1), 243 (2019)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Funding

The funding was provided by Petrobras (Grant No. 2017/00428-1) and CAPES (Grant No. PROEX 803/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roney L. Thompson.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figures 5 to 9 are updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, A.B.G., Thompson, R.L., Schwalbert, M.P. et al. Effects of Intra-REV Pore Distribution Modeling in the Flow of Non-Newtonian Fluids in Porous Media. Transp Porous Med 145, 505–525 (2022). https://doi.org/10.1007/s11242-022-01861-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01861-w

Keywords

Navigation