Skip to main content
Log in

Characterization and Monitoring of Porous Media with Electrical Imaging: A Review

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Electrical geophysical imaging is a widely used noninvasive technology for visualizing porous media at scales larger than individual pores. Originally developed for medical applications, the technology has been applied to investigate flow and transport properties/processes in a wide range of fields including earth sciences, civil and environmental engineering, agricultural sciences and biology. Conventional electrical imaging measures electrical conduction processes occurring through the fluids filling the interconnected pores and within the electrical double layer at the solid–fluid interface. Complex electrical imaging, an extension of the methodology, also measures electrical polarization processes within the electric double layer and in the presence of metals. Electrical imaging has been used to determine the spatial distribution of physical properties controlling flow/transport in porous media, image fluid dynamics, observe solute transport phenomena and capture matrix transformations. The method has been applied to investigate porous media processes in soils, rocks, concrete, engineered barriers, wastewater filters and living trees. Advances in the technology will result from (1) improving the understanding of the relationship of complex conductivity measurements to more processes occurring in porous media and (2) developing new instrumentation that will support longer-term autonomous electrical monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Gray (1918), Paulsen et al. (2006), Martin and Günther (2013), Busato et al. (2016)

Fig. 2

Modified from Al Hagrey (2006), Kuras et al. (2007), unpublished sources

Fig. 3
Fig. 4

Modified from Busato et al. (2016)

Fig. 5

Modified from Yang et al. (2015)

Fig. 6
Fig. 7

Modified from Martin and Günther (2013)

Fig. 8

Similar content being viewed by others

References

  • Abdel Aal, G., Atekwana, E.A., Rossbach, S., Radzikowski, S.: Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron-oxide coated sands. Geophys. Res. Lett. 36, L04403 (2009)

    Google Scholar 

  • Al Hagrey, S.: Electrical resistivity imaging of tree trunks. Near Surf. Geophys. 4(3), 179–187 (2006)

    Google Scholar 

  • Allen, J.P., Atekwana, E.A., Atekwana, E.A., Duris, J.W., Werkema, D.D., Rossbach, S.: The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl. Environ. Microbiol. 73(11), 2860–2870 (2007)

    Google Scholar 

  • Anbu, P., Kang, C.-H., Shin, Y.-J., So, J.-S.: Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5(1), 250–272 (2016)

    Google Scholar 

  • Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Pet. Eng. 146, 54–62 (1942)

    Google Scholar 

  • Atekwana, E.A., Atekwana, E.A.: Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv. Geophys. 31(2), 247–283 (2010)

    Google Scholar 

  • Atekwana, E.A., Slater, L.D.: Biogeophysics: a new frontier in earth science research. Rev. Geophys. 47, RG4004-1–RG4004-30 (2009)

    Google Scholar 

  • Atekwana, E.A., Sauck, W.A., Werkema, D.D.: Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J. Appl. Geophys. 44(2–3), 167–180 (2000)

    Google Scholar 

  • Atekwana, E.A., Werkema, D.D., Atekwana, E.A.: Biogeophysics: the effects of microbial processes on geophysical properties of the shallow subsurface. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds.) Applied Hydrogeophysics, pp. 161–193. Springer, New York (2006)

    Google Scholar 

  • Audebert, M., Oxarango, L., Duquennoi, C., Touze-Foltz, N., Forquet, N., Clément, R.: Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling—part II: constraint methodology of hydrodynamic models. Waste Manag 55, 176–190 (2016)

    Google Scholar 

  • Babei, S., Adams, J.J.: Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 41(20), 3151–3175 (2003)

    Google Scholar 

  • Babei, R., Bonakdarpour, B., Ein-Mozaffari, F.: The use of electrical resistance tomography for the characterization of gas holdup inside a bubble column bioreactor containing activated sludge. Chem. Eng. J. 268, 260–269 (2015)

    Google Scholar 

  • Binley, A.: DC electrical methods. In: Schubert, G. (ed.) Treatise on Geophysics, 2nd edn, pp. 233–259. Elsevier, New York (2015)

    Google Scholar 

  • Binley, A., Kemna, A.: DC resistivity and induced polarization methods. In: Rubin, Y., Hubbard, S.S. (eds.) Hydrogeophysics. Water Science and Technology Library, vol. 50, pp. 129–156. Springer, Dordrecht (2005)

    Google Scholar 

  • Binley, A., Cassiani, G., Middleton, R., Winship, P.: Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging. J. Hydrol. 267, 147–159 (2002)

    Google Scholar 

  • Behroozmand, A.A., Keating, K., Auken, E.: A review of the principles and applications of the NMR technique for near-surface characterization. Surv. Geophys. 36(1), 27–85 (2015)

    Google Scholar 

  • Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H.: Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics 77(6), B253–B267 (2012)

    Google Scholar 

  • Bernard, C., Persoone, G., Janssen, R.C., Le Dû-Delepierre, A.: Estimation of the hazard of landfills through toxicity testing of leachates-2. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere 35, 2783–2796 (1997)

    Google Scholar 

  • Bichet, V., Grisey, E., Aleya, L.: Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng. Geol. 211, 61–73 (2016)

    Google Scholar 

  • Blondel, A., Schmutz, M., Franceschi, M., Tichané, F., Carles, M.: Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site. J. Appl. Geophys. 103, 161–171 (2014)

    Google Scholar 

  • Boquet, E., Boronat, A., Ramos-Cormenzana, A.: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246, 527–529 (1973)

    Google Scholar 

  • Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., Zhuang, Q.: Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19(5), 1325–1346 (2013)

    Google Scholar 

  • Broomfield, J.R.: Corrosion of Steel in Concrete: Understanding, Investigation and Repair. CRC Press, Boca Raton (2002)

    Google Scholar 

  • Bücker, M., Flores Orozco, A., Kemna, A.: Electro-chemical polarization around metallic particles—part 1: the role of diffuse-layer and volume-diffusion relaxation. Geophysics 83(4), 1–53 (2018)

    Google Scholar 

  • Burbank, M.B., Weaver, T.J., Green, T.L., Williams, B.C., Crawford, R.L.: Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J. 28, 301–312 (2011)

    Google Scholar 

  • Busato, L., Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., Cassiani, G.: Combined geophysical surveys for the characterization of a reconstructed river embankment. Eng. Geol. 211, 74–84 (2016)

    Google Scholar 

  • Casado, I., Mahjoub, H., Lovera, R., Fernández, J., Casas, A.: Use of electrical tomography methods to determinate the extension and main migration routes of uncontrolled landfill leachates in fractured areas. Sci. Total Environ. 506–507, 546–553 (2015)

    Google Scholar 

  • Cassiani, G., Boaga, J., Vanella, D., Perri, M.T., Consoli, S.: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 19, 2213–2225 (2015)

    Google Scholar 

  • Caterina, D., Flores Orozco, A., Nguyen, F.: Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination. J. Contam. Hydrol. 201, 19–29 (2017)

    Google Scholar 

  • Clément, R., Descloitres, M., Günther, T., Oxarango, L., Morra, C., Laurent, J.P., Gourc, J.P.: Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Manag 30(3), 452–464 (2009)

    Google Scholar 

  • Clément, R., Oxarango, L., Descloitres, M.: Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill. Waste Manag 31(3), 457–467 (2011)

    Google Scholar 

  • Comas, X., Slater, L., Reeve, A.: Seasonal geophysical monitoring of biogenic gases in a northern peatland: implications for temporal and spatial variability in free phase gas production rates. J. Geophys. Res. 113, G01012 (2008)

    Google Scholar 

  • Daily, W., Ramirez, A., Binley, A.: Remote monitoring of leaks in storage tanks using electrical resistance tomography: application at the Hanford site. J. Environ. Eng. Geophys. 9, 11–24 (2004)

    Google Scholar 

  • Davis, C.A., Atekwana, Estella, Atekwana, Eliot, Slater, L.D., Rossbach, S., Mormile, M.R.: Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys. Res. Lett. 33(11), L18403 (2006)

    Google Scholar 

  • de Franco, R., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B., Giada, M., Rizzetto, F., Claude, C., Mayer, A., Bassan, V., Gasparetto-Stori, G.: Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: the Chioggia test site (Venice Lagoon, Italy). J. Appl. Geophys. 69, 117–130 (2009)

    Google Scholar 

  • Dejong, J.T., Fritzges, M.B., Nüsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)

    Google Scholar 

  • Dejong, J.T., Mortenson, B.M., Martinez, B.C., Nelson, D.C.: Bio-mediated soil improvement. Ecol. Eng. 36, 197–210 (2010)

    Google Scholar 

  • Denchik, N., Pezard, P.A., Neyens, D., Lofi, J., Frederick, G., Girard, J., Levannier, A.: Near-surface CO2 leak detection monitoring from downhole electrical resistivity at the CO2 Field Laboratory, Svelvik Ridge (Norway). Ing. J. Greenh. Gas Control 28, 275–282 (2014)

    Google Scholar 

  • Dethlefsen, F., Kober, R., Schafer, D., Al Hagrey, S.A., Hornbruch, G., Ebert, M., Beyer, M., Grobmann, J., Dahmke, A.: Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia 37, 4886–4893 (2013)

    Google Scholar 

  • Don, N.C., Hang, N.T.M., Araki, H., Yamanishi, H., Koga, K.: Groundwater resources management under environmental constraints. Environ. Geol. 49, 601–609 (2006)

    Google Scholar 

  • Ebraheem, A.M., Sherif, M.M., Al Mulla, M.M., Akram, S.F., Shetty, A.V.: A geoelectrical and hydrogeological study for the assessment of groundwater resources in Wadi Al Bih, UAE. Environ. Earth Sci. 61, 845–857 (2012)

    Google Scholar 

  • Flores Orozco, A., Williams, K.H., Long, P.E., Hubbard, S.S., Kemna, A.: Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer. J. Geophy. Res. Biogeosci. 116(G3), G03001 (2011)

    Google Scholar 

  • Flores Orozco, A., Kemna, A., Oberdorster, C., Zschornack, L., Leven, C., Dietrich, P., Weiss, H.: Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J. Contam. Hydrol. 136–137, 131–144 (2012)

    Google Scholar 

  • Florsch, N., Muhlach, F.: Everyday Applied Geophysics: Electrical Methods. Elsevier, New York (2017)

    Google Scholar 

  • Florsch, N., Llubes, M., Téreygeol, F., Ghorbani, A., Roblet, P.: Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J. Archaeol. Sci. 38, 438–451 (2011)

    Google Scholar 

  • Frankel, G.S.: Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM Int. 5(2), 1–27 (2008)

    Google Scholar 

  • Gallas, J.D.F., Taioli, F., Filho, W.M.: Induced polarization, resistivity, and self-potential: a case history of contamination evaluation due to landfill leakage. Environ. Earth Sci. 63, 251–261 (2011)

    Google Scholar 

  • Gandossi, L., Von Estorff, U.: An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. JRC science for policy report, European Commission, pp. 1–58 (2015)

  • Gasperikova, E., Hubbard, S.S., Watson, D.B., Baker, G.S., Peterson, J.E., Kowalsky, M.B., Smith, M., Brooks, S.: Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior. J. Contam. Hydrol. 142–143, 33–49 (2012)

    Google Scholar 

  • Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., Christiansen, A.V.: Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study. Near Surf. Geophys. 10, 575–586 (2012a)

    Google Scholar 

  • Gazoty, A., Fiandaca, G., Pedersen, E., Auken, E., Christiansen, A.V., Pedersen, J.K.: Application of time domain induced polarization to mapping of lithotypes in a landfill site. Hydrol. Earth Syst. Sci. 16, 1793–1804 (2012b)

    Google Scholar 

  • Goebel, M., Pidlisecky, A., Knight, R.: Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast. J. Hydrol. 551, 746–755 (2017)

    Google Scholar 

  • González-Pinzón, R., Ward, A.S., Hatch, C.E., Wlostowski, A.N., Singha, K., Gooseff, M.N., Haggerty, R., Harvey, J.W., Cirpka, O.A., Brock, J.T.: A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshw. Sci. 34(1), 139–160 (2015)

    Google Scholar 

  • Gray, H.: Anatomy of the Human Body, 20th edn, pp. 1–1343. Lea and Febiger, Philadelphia (1918)

    Google Scholar 

  • Griffiths, D.G., Barker, R.D.: Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys. 29(3–4), 211–226 (1993)

    Google Scholar 

  • Grisey, E., Belle, E., Dat, J., Mudry, J., Aleya, L.: Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests. Desalination 261, 162–169 (2010)

    Google Scholar 

  • Gowers, K.R., Millard, S.G.: Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique. ACI Mater. J. 96(5), 536–541 (1999)

    Google Scholar 

  • Gunn, D.A., Chambers, J.E., Uhlemann, S., Wilkinson, P.B., Meldrum, P.I., Dijkstra, T.A., Haslam, E., Kirkham, M., Wragg, J., Holyoake, S., Hughes, P.N., Hen-Jones, R., Glendinning, S.: Moisture monitoring in clay embankments using electrical resistivity tomography. Constr. Build. Mater. 92, 82–94 (2015)

    Google Scholar 

  • Günther, T., Martin, T.: Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J. Appl. Geophys. 135, 436–448 (2016)

    Google Scholar 

  • Guyot, A., Ostergaard, K.T., Lenkopane, M., Fan, J., Lockington, D.A.: Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiol. 33, 187–194 (2013)

    Google Scholar 

  • Heenan, J., Slater, L.D., Ntarlagiannis, D., Atekwana, E.A., Fathepure, B.Z., Dalvi, S., Ross, C., Werkema, D.D., Atekwana, E.A.: Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: lessons from the Deepwater Horizon oil spill. Geophysics 80(1), B1–B11 (2015)

    Google Scholar 

  • Henderson, R.D., Day-Lewis, F.D., Abarca, E., Harvey, C.F., Harvey, C.F., Karam, H.N., Liu, L., Lane Jr., J.W.: Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA. Hydrogeol. J. 18(1), 173–185 (2010)

    Google Scholar 

  • Hibbs, A., Wilt, M.: Evaluation of deep subsurface resistivity imaging for hydrofracture monitoring. Technical report, U.S. DOE, National Energy Technology Laboratory, pp. 1–57 (2016)

  • Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch, I., Vonder Mühll, D., Mäusbacher, R.: Monitoring mountain permafrost evolution using electrical resistivity tomography: a 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J. Geophys. Res. Earth Surf. 113(F1), F01S90 (2008)

    Google Scholar 

  • Hördt, A., Blaschek, R., Kemna, A., Zisser, N.: Hydraulic conductivity estimation from induced polarization data at the field scale—the Krauthausen case history. J. Appl. Geophys. 62(1), 33–46 (2007)

    Google Scholar 

  • Hornbostel, K., Larsen, C.K., Geiker, M.R.: Relationship between concrete resistivity and corrosion rate—a literature review. Cem. Concr. Res. 75, 294–304 (2013)

    Google Scholar 

  • Jayawickreme, D.H., Van Dam, R.L., Hyndman, D.W.: Hydrological consequences of land-cover change: quantifying the influence of plants on soil moisture with time-lapse electrical resistivity. Geophysics 75(4), WA43–WA50 (2010)

    Google Scholar 

  • Johnson, T.C., Versteeg, R.J., Ward, A., Day-Lewis, F.D., Revil, A.: Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data. Geophysics 75(4), WA27–WA41 (2010)

    Google Scholar 

  • Johnson, T.C., Versteeg, R.J., Day-Lewis, F.D., Major, W., Lane Jr., J.W.: Time-lapse electrical geophysical monitoring of amendment-based biostimulation. Groundwater 53(6), 920–932 (2015)

    Google Scholar 

  • Karaoulis, M.C., Kim, J.H., Tsourlos, P.I.: 4D active time constrained resistivity inversion. J. Appl. Geophys. 73(1), 25–34 (2011)

    Google Scholar 

  • Kantzas, A.: Investigation of physical properties of porous rocks and fluid flow phenomena in porous media using computer assisted tomography. In Situ 14(1), 77–132 (1990)

    Google Scholar 

  • Kelly, B.F.J., Acworth, R.I., Greve, A.K.: Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling. Soil Res. 49(6), 504–512 (2011)

    Google Scholar 

  • Kettridge, N., Binley, A., Green, S.M., Baird, A.J.: Ebullition events monitored from northern peatlands using electrical imaging. J. Geophys. Res. 116, G04004 (2011)

    Google Scholar 

  • Khanna, A.J.: MRI Essentials for the Spine Specialist, 1st edn. Thieme, New York (2014)

    Google Scholar 

  • Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., The CO2 SINK Group: Geoelectrical methods for monitoring geological CO2 storage: first results from cross-hole and surface–downhole measurements from the CO2 SINK test site at Ketzin (Germany). Ing. J. Greenh. Gas Control 4(5), 816–826 (2010)

    Google Scholar 

  • Kleinman, P., Sullivan, D., Wolf, A., Brandt, R., Dou, Z., Elliott, H., Kovar, J., Leytem, A., Maguire, R., Moore, P., Saporito, L., Sharpley, A., Shober, A., Sims, T., Toth, J., Toor, G., Zhang, H., Zhang, T.: Selection of a water-extractable phosphorous test for manures and biosolids as an indicator of runoff loss potential. J. Environ. Qual. 36(5), 1357–1367 (2007)

    Google Scholar 

  • Kleinman, P.J.A., Smith, D.R., Bolster, C.H., Easton, Z.M.: Phosphorus fate, management, and modeling in artificially drained systems. J. Environ. Qual. 44(2), 460–466 (2015)

    Google Scholar 

  • Kuras, O., Beamish, D., Meldrum, P.I., Oglivy, R.D.: Fundamentals of the capacitive resistivity technique. Geophysics 71(3), G135–G152 (2006)

    Google Scholar 

  • Kuras, O., Meldrum, P.I., Beamish, D., Oglivy, R.D., Lala, D.: Capacitive resistivity imaging with towed arrays. JEEG 12, 267–279 (2007)

    Google Scholar 

  • LaBrecque, D., Daily, W.: Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics 73(2), F55–F64 (2008)

    Google Scholar 

  • LaBrecque, D.J., Yang, X.: Difference inversion of ERT data: a fast inversion method for 3-D in situ monitoring. J. Environ. Eng. Geophys. 6(2), 83–89 (2001)

    Google Scholar 

  • Lamert, H., Geistlinger, H., Werban, U., Schütze, C., Peter, A., Hornbruch, G., Schulz, A., Pohlert, M., Kalia, S., Beyer, M., Großmann, J., Dahmke, A., Dietrich, P.: Electrical conductivity and total dissolved solids—what is their precise relationship? Desalination 67(2), 447–462 (2012)

    Google Scholar 

  • Lemunyon, J.L., Gilbert, R.G.: The concept and need for a phosphorus assessment tool. J. Prod. Agric. 6(4), 483–486 (1993)

    Google Scholar 

  • Lions, J., Devau, N., de Lary, L., Dupraz, S., Parmentier, M., Gombert, P., Dictor, M.: Potential impacts of leakage from CO2 geological storage on geochemical processes controlling fresh groundwater quality: a review. Int. J. Greenh. Gas Control 22, 165–175 (2014)

    Google Scholar 

  • Litynski, J.T., Plasynski, S., McIlvried, H.G., Mahoney, C., Srivastava, R.D.: The United States Department of Energy’s regional carbon sequestration partnerships program validation phase. Environ. Int. 34(1), 127–138 (2008)

    Google Scholar 

  • Loperte, A., Soldovieri, F., Palombo, A., Santini, F., Lapenna, V.: An integrated geophysical approach for water infiltration detection and characterization at Monte Cotugno rock-fill dam (southern Italy). Eng. Geol. 211, 162–170 (2016)

    Google Scholar 

  • Martin, T.: Complex resistivity measurements on oak. Eur. J. Wood Prod. 70, 45–53 (2012)

    Google Scholar 

  • Martin, T., Günther, T.: Complex resistivity tomography (CRT) for fungus detection on standing oak trees. Eur. J. For. Res. 132, 765–776 (2013)

    Google Scholar 

  • Maurya, P.K., Balbarini, N., Møller, I., Rønde, V., Christiansen, A.V., Bjerg, P.L., Auken, E., Fiandaca, G.: Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization. Geophys. J. Int. 213(2), 770–785 (2018)

    Google Scholar 

  • Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A.: Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 39(5), 1138–1158 (2003)

    Google Scholar 

  • Miller, C.R., Routh, P.S., Brosten, T.R., McNamara, J.P.: Application of time-lapse ERT imaging to watershed characterization. Geophysics 73(3), G7–G17 (2008)

    Google Scholar 

  • Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., Wang, G.: Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 1(4), 277–288 (2004)

    Google Scholar 

  • Morrow, F.J., Ingham, M.R., McConchie, J.A.: Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. J. Hydrol. 389, 69–77 (2010)

    Google Scholar 

  • Najib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A.: Contribution of hydrochemical and geoelectric approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. J. Contam. Hydrol. 198, 24–36 (2017)

    Google Scholar 

  • Nenna, V., Pidlisecky, A., Knight, R.: Application of an extended Kalman filter approach to inversion of time-lapse electrical resistivity imaging data for monitoring recharge. Water Resour. Res. 47(10), W10525 (2011)

    Google Scholar 

  • Ng, W., Lee, M., Hii, S.: An overview of the factors affecting microbial-induced calcite precipitation and its potential applications in soil improvement. World Acad. Sci. Eng. Technol. 62(2), 723–729 (2012)

    Google Scholar 

  • Nicolotti, G., Socco, L., Martinis, R., Godio, A., Sambuelli, L.: Application and comparison of three tomographic techniques for detection of decay in trees. J. Aboric. 29, 66–78 (2003)

    Google Scholar 

  • Niederleithinger, E., Weller, A., Lewis, R.: Evaluation of geophysical techniques for dike inspection. J. Environ. Eng. Geophys. 17(4), 185–195 (2012)

    Google Scholar 

  • Niu, Q., Zhang, C.: Physical explanation of Archie’s porosity exponent in granular materials: a process-based, pore-scale numerical study. Geophys. Res. Lett. 45(4), 1870–1877 (2018)

    Google Scholar 

  • Ntarlagiannis, D., Williams, K.H., Slater, L., Hubbard, S.: Low-frequency electrical response to microbial induced sulfide precipitation. J. Geophys. Res. Biogeosci. 110, G02009-1–G02009-12 (2005a)

    Google Scholar 

  • Ntarlagiannis, D., Yee, N., Slater, L.: On the low-frequency electrical polarization of bacterial cells in sands. Geophys. Res. Lett. 32(24), L24402 (2005b)

    Google Scholar 

  • Ntarlagiannis, D., Robinson, J., Soupios, P., Slater, L.: Field-scale electrical geophysics over an olive oil mill waste deposition site: evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination. J. Appl. Geophys. 135, 418–426 (2016)

    Google Scholar 

  • Papa, F., Prignet, C., Aires, F., Jimenez, C., Rossow, W.B., Matthews, E.: Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. 115, D12111 (2010)

    Google Scholar 

  • Paulsen, K.D., Hartove, A., Poplack, S.P., Halter, R.J., Manwaring, P.K.: EIS Breast Imaging Research at Dartmouth College. Thayer School of Engineering, Dartmouth College. http://www-nml.dartmouth.edu/biomedprg/EIS/index.html (2006). Accessed 31 May 2018

  • Personna, Y.R., Slater, L., Ntarlagiannis, D., Werkema, D., Szabo, Z.: Complex resistivity signatures of ethanol biodegradation in porous media. J. Contam. Hydrol. 153, 37–50 (2013)

    Google Scholar 

  • Placencia-Gómez, E.R.: Spectral induced polarization investigations in presence of metal sulphide minerals: implications for monitoring generation of acid mine drainage. Ph.D. thesis, Aalto University, Department of Civil and Environmental Engineering (2015)

  • Placencia-Gómez, E., Parviainen, A., Slater, L., Leveinen, J.: Spectral induced polarization (SIP) response of mine tailings. J. Contam. Hydrol. 173, 8–24 (2015)

    Google Scholar 

  • Polder, R.B.: Test methods for on-site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Constr. Build. Mater. 15, 125–131 (2001)

    Google Scholar 

  • Power, C., Gerhard, J.I., Tsourlos, P., Soupios, P., Simyrdanis, K., Karaoulis, M.: Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. J. Appl. Geophys. 112, 1–13 (2015)

    Google Scholar 

  • Perri, M.T., Boaga, J., Bersan, S., Cassiani, G., Cola, S., Deianna, R., Simonini, P., Patti, S.: River embankment characterization: the joint use of geophysical and geotechnical techniques. J. Appl. Geophys. 110, 5–22 (2014)

    Google Scholar 

  • Reinhart, D.R., Townsend, T.G.: Landfill Bioreactor Design and Operation. Lewis Publishers, Boca Raton (1998)

    Google Scholar 

  • Revil, A.: Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1 GHz. Water Resour. Res. 49(1), 306–327 (2013)

    Google Scholar 

  • Revil, A., Glover, P.W.J.: Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophys. Res. Lett. 25(5), 691–694 (1998)

    Google Scholar 

  • Revil, A., Atekwana, E., Zhang, C., Jardani, A., Smith, S.: A new model for the spectral induced polarization signature of bacterial growth in porous media. Water Resour. Res. 48(9), W09545 (2012)

    Google Scholar 

  • Sasaki, Y.: 3-D resistivity inversion using the finite-element method. Geophysics 59(11), 1839–1848 (1994)

    Google Scholar 

  • Saneiyan, S., Ntarlagiannis, D., Werkema, D.D., Ustra, A.: Geophysical methods for monitoring soil stabilization processes. J. Appl. Geophys. 148, 234–244 (2018)

    Google Scholar 

  • Saneiyan, S., Ntarlagiannis, D., Ohan, J., Lee, J., Colwell, F., Burns, S.: Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes. Ecol Eng. 127, 36–47 (2019)

    Google Scholar 

  • Sauck, W.A., Atekwana, E.A., Nash, M.S.: high conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J. Environ. Eng. Geophys. 2(3), 203–212 (1998)

    Google Scholar 

  • Schwarz, G.: A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phys. Chem. 66, 2636–2642 (1962)

    Google Scholar 

  • Schwarze, F., Engels, J., Mattheck, C.: Holzzersetzende Pilze in Bäumen. Rombach Verlag, Freiburg (1999)

    Google Scholar 

  • Sharpley, A., Beegle, D., Bolster, C., Good, L., Joern, B., Ketterings, Q., Lory, J., Mikkelsen, R., Osmond, D., Vadas, P.: Phosphorus indices: why we need to take stock of how we are doing. J. Environ. Qual. 41, 1710–1719 (2012)

    Google Scholar 

  • Sherif, M., Kacimov, A., Javadi, A., Ebraheem, A.Z.: Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi Ham UAE. Water Resour. Manag. 26, 751–774 (2012)

    Google Scholar 

  • Shigo, A., Shigo, A.: Detection of discoloration and decay in living trees and utility poles. Technical report (1974)

  • Singha, K., Day-Lewis, F.D., Johnson, T., Slater, L.D.: Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrol. Process. 28(6), 1549–1576 (2014)

    Google Scholar 

  • Skutt, H., Shigo, A., Lessard, R.: Detection of discolored and decayed wood in living trees using a pulsed electric current. Can. J. For. Res. 2, 54–56 (1972)

    Google Scholar 

  • Slater, L., Lesmes, D.P.: Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour. Res. 38(10), 31–1–13 (2002)

    Google Scholar 

  • Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R., Sandberg, S.: A 3D ERT study of solute transport in a large experimental tank. J. Appl. Geophys. 49, 211–229 (2002)

    Google Scholar 

  • Slater, L., Comas, X., Ntarlagiannis, D., Moulik, M.R.: Resistivity-based monitoring of biogenic gases in peat soils. Water Resour. Res. 43, W10430 (2007)

    Google Scholar 

  • Song, H.-W., Saraswathy, V.: Corrosion monitoring of reinforced concrete structures—a review. Int. J. Electrochem. Sci. 2, 1–28 (2007)

    Google Scholar 

  • Spangler, L.H., Dobeck, L.M., Repasky, K.S., Nehrir, A.R., Humphries, S.D., Barr, J.L., Keith, C.J., Shaw, J.A., Rouse, J.H., Cunningham, A.B., Benson, S.M., Oldenburg, C.M., Lewicki, J.L., Wells, A.W., Diehl, J.R., Strazisar, B.R., Fessenden, J.E., Rahn, T.A., Amonette, J.E., Barr, J.L., Pickles, W.L., Jacobson, J.D., Silver, E.A., Male, E.J., Rauch, H.W., Gullickson, K.S., Trautz, R., Kharaka, Y., Birkholzer, J., Wielopolski, L.: A shallow subsurface controlled release facility in Bozeman, Montana USA, for testing near surface CO2 detection techniques and transport models. Environ. Earth Sci. 60, 227–239 (2010)

    Google Scholar 

  • Srayeddin, I., Doussan, C.: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography. Plant Soil 319, 185–207 (2009)

    Google Scholar 

  • Stamm, A.: An electrical conductivity method for determining the moisture content of wood. Ind. Eng. Chem. 19(9), 1021–1025 (1930)

    Google Scholar 

  • Stocker, T.F., et al.: Technical summary. In: Stoker, T.F., et al. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 33–115. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Strazisar, B.R., Wells, A.W., Diehl, J.R., Hammack, R.W., Veloski, G.A.: Near-surface monitoring for the ZERT shallow CO2 injection project. Int. J. Greenh. Gas Control 3(6), 736–744 (2009)

    Google Scholar 

  • Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Terry, N., Slater, L., Comas, X., Reeve, A.S., Schäfer, K.V.R., Yu, Z.: Free phase gas processes in a northern peatland inferred from autonomous field-scale resistivity imaging. Water Resour. Res. 52, 2996–3018 (2016)

    Google Scholar 

  • Trabelsi, R., Moncef Zairi, M., Dhia, H.B.: Groundwater salinization of the Sfax superficial aquifer, Tunisia. J. Hydrogeol. 157, 1341–1355 (2007)

    Google Scholar 

  • Ustra, A.T., Elis, V.R., Mondelli, G., Zuquette, L.V., Giacheti, H.L.: Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environ. Earth Sci. 66, 763–772 (2012)

    Google Scholar 

  • Vaudelet, P., Schmutz, M., Pessel, M., Franceschi, M., Guérin, R., Atteia, O., Blondel, A., Ngomseu, C., Galaup, S., Rejiba, F., Bégassat, P.: Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. J. Appl. Geophys. 338, 738–751 (2011)

    Google Scholar 

  • Walter, B.P., Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob. Biogeochem. Cycles 14, 745–765 (2000)

    Google Scholar 

  • Walton, N.R.G.: Electrical conductivity and total dissolved solids—what is their precise relationship? Desalination 72, 275–292 (1989)

    Google Scholar 

  • Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., Shen, D.: Review of ground improvement using microbial induced carbonate precipitation (MICP). Mar. Georesources Geotechnol. 35(8), 1135–1146 (2017)

    Google Scholar 

  • Webb, W.R., Brant, W.E., Major, N.M.: Fundamentals of Body CT, 4th edn. Elsevier, Philadelphia (2015)

    Google Scholar 

  • Weber, R., Watson, A., Forter, M., Olliaei, F.: Persistent organic pollutants and landfills: a review of past experiences and future challenges. Waste Manag. Res. 29, 107–121 (2011)

    Google Scholar 

  • Wehrer, M., Slater, L.D.: Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions. Water Resour. Res. 51(1), 97–124 (2014)

    Google Scholar 

  • Wehrer, M., Lissner, H., Bloem, E., French, H., Totsche, K.U.: Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals. Environ. Sci. Pollut. Res. 21, 8964–8980 (2014)

    Google Scholar 

  • Weller, A., Canh, T., Breede, K., Vu, N.T.: Multi-electrode measurements at Thai Binh dikes (Vietnam). Near Surf. Geophys. 4(2), 135–143 (2006)

    Google Scholar 

  • Weller, A., Slater, L., Nordsiek, S., Ntarlagiannis, D.: On the estimation of specific surface per unit pore volume from induced polarization: a robust empirical relation fits multiple data sets. Geophysics 75(4), WA105–SA112 (2010)

    Google Scholar 

  • Weller, A., Slater, L., Binley, A., Nordsiek, S., Xu, S.: Permeability prediction based on induced polarization: insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range. Geophysics 80(2), D161–DD173 (2015)

    Google Scholar 

  • Wemegah, D.D., Fiandaca, G., Auken, E., Menyeh, A., Danuor, S.K.: Time-domain spectral induced polarization and magnetics for mapping municipal solid waste deposits in Ghana. In: 20th European Meeting of Environmental and Engineering Geophysics, Athens, Greece (2014)

  • Wemegah, D.D., Fiandaca, G., Auken, E., Menyeh, A., Danuor, S.K.: Spectral time-domain induced polarization and magnetic surveying—an efficient tool for characterization of solid waste deposits in developing countries. Near Surf. Geophys. 15(1), 75–84 (2017)

    Google Scholar 

  • White, D.: Monitoring CO2 storage during EOR at the Weyburn–Midale field. Lead. Edge 28, 838–842 (2009)

    Google Scholar 

  • Williams, K.H., Ntarlagiannis, D., Slater, L.D., Dohnalkova, A., Hubbard, S.S., Banfield, J.F.: Geophysical imaging of stimulated microbial biomineralization. Environ. Sci. Technol. 39, 7592–7600 (2005)

    Google Scholar 

  • Williams, K.H., Kemna, A., Wilkins, M.J., Druhan, J., Arntzen, E., N’Guessan, A.L., Long, P.E., Hubbard, S.S., Banfield, J.F.: Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environ. Sci. Technol. 43, 6717–6723 (2009)

    Google Scholar 

  • Wiwattanachang, N., Giao, P.H.: Monitoring crack development in fiber concrete beam by using electrical resistivity imaging. J. Appl. Geophys. 75, 294–304 (2011)

    Google Scholar 

  • Wu, Y., Slater, L.D., Korte, N.: Low frequency electrical properties of corroded iron barrier cores. Environ. Sci. Technol. 40(7), 2254–2261 (2006)

    Google Scholar 

  • Wu, Y., Versteeg, R., Slater, L., LaBrecque, D.: Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions. J. Contam. Hydrol. 106(3–4), 131–143 (2009)

    Google Scholar 

  • Wong, J.: An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores. Geophysics 44(7), 1245–1265 (1979)

    Google Scholar 

  • Yang, X., Lassen, R.N., Jensen, K.H., Looms, M.C.: Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. Int. J. Greenh. Gas Control 42, 534–544 (2015)

    Google Scholar 

  • Zarif, F., Kessouri, P., Slater, L.: Recommendations for field-scale induced polarization (IP) data acquisition and interpretation. J. Environ. Eng. Geophys. 22(4), 395–410 (2017)

    Google Scholar 

  • Zhao, Z.F., Mehrvar, M., Ein-Mozaffari, F.: Mixing time in an agitated multi-lamp cylindrical photoreactor using electrical resistance tomography. J. Chem. Technol. Biotechnol. 83, 1676–1688 (2008)

    Google Scholar 

Download references

Acknowledgements

The case study shown in Fig. 3 was partly supported by the former Christina River Critical Zone Observatory (CZO) directed by Anthony Aufdenkampe (formerly at the Stroud Water Research Center). The case study shown in Fig. 6 was performed in collaboration with Anthony Buda (US Department of Agriculture [USDA]), Amy Shober (University of Delaware) and Amy Collick (University of Maryland—Eastern Shore) under funding from the USDA. The case study shown in Fig. 8 was supported by the US Department of Defense under award ER-201430 (Kent Sorenson, PI, CDM Smith). The review comments received from two anonymous reviewers improved the quality of this manuscript. We also thank Sina Saneiyan (Rutgers University Newark) for insights into the complex conductivity response to calcite precipitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Slater.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falzone, S., Robinson, J. & Slater, L. Characterization and Monitoring of Porous Media with Electrical Imaging: A Review. Transp Porous Med 130, 251–276 (2019). https://doi.org/10.1007/s11242-018-1203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1203-2

Keywords

Navigation