Skip to main content
Log in

An Investigation of Flow Across Porous Layer Wrapped Flat Tube Banks

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Performance of the staggered and inline tube bundles with three rows covered by a porous layer has been numerically studied from the viewpoint of the first and second law of thermodynamics. The results indicate that wrapping tubes with a porous layer bring about Nu number augmentation as well as pressure drop increment in comparison with the bare tube banks for both inline and staggered configurations and for both flat and circular tube shapes. In addition, bundles with porous layer wrapped flat tubes have a higher thermal performance and lower entropy generation rate than those of porous layer wrapped circular tubes, especially for the staggered configuration. The investigation on heat transfer, pressure drop and entropy generation rate is performed for different pitch spacings as well as different thicknesses of porous layer in order to find the optimal designs. The porous layer wrapped banks with flattened tubes show a great potential for application in heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

C F :

Forchheimer coefficient

c p :

Specific heat, J/kg K

D f :

Diameter of flat tube, m

D eq :

Diameter of equivalent circular tube, m

f :

Friction factor

F D :

Drag force, N

h :

Heat transfer coefficient, W/m2 K

K :

Permeability of the porous media, m2

k :

Thermal conductivity, W/m K

k eff :

Effective thermal conductivity, W/m K

\( \dot{m} \) :

Mass flow rate, kg/s

N row :

Number of tube rows

N s :

Entropy generation number

N s,a :

Augmentation entropy generation number

Nu :

Nusselt number

P :

Pressure, Pa

Pe :

Peclet number

Re :

Reynolds number

Pr :

Prandtl number

S t :

Transverse pitch, m

S l :

Longitudinal pitch, m

\( \dot{S}_{\text{gen}} \) :

Total entropy generation rate, W K−1

T :

Temperature, K

U :

Inlet velocity, m/s

φ :

Porosity

µ :

Viscosity, N s/m2

ρ :

Density, kg/m3

CTB:

Circular tube bank

FTB:

Flat tube bank

TP:

Thermal performance

f:

Fluid

p:

Porous

s:

Tube surface

References

  • Al-Salem, K., Oztop, H.F., Kiwan, S.: Effects of porosity and thickness of porous sheets on heat transfer enhancement in a cross flow over heated cylinder. Int. Commun. Heat Mass Transf. 38(9), 1279–1282 (2011)

    Article  Google Scholar 

  • Al-Sumaily, G.F.: Forced convection heat transfer from a bank of circular cylinders embedded in a porous medium. J. Heat Transf. 136(4), 042602 (2014)

    Article  Google Scholar 

  • Alvandifar, N., Saffar-Avval, M., Amani, E.: Partially metal foam wrapped tube bundle as a novel generation of air cooled heat exchangers. Int. J. Heat Mass Transf. 118, 171–181 (2018)

    Article  Google Scholar 

  • Bahaidarah, H.M., Anand, N., Chen, H.: A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numer. Heat Transf. A Appl. 48(4), 359–385 (2005)

    Article  Google Scholar 

  • Bayat, H., Lavasani, A.M., Bolhasani, M., Moosavi, S.: Numerical study of flow around flat tube between parallel walls. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. World Acad. Sci. Eng. Technol. 92, 92 (2014a)

    Google Scholar 

  • Bayat, H., Lavasani, A.M., Maarefdoost, T.: Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Convers. Manag. 85, 470–476 (2014b)

    Article  Google Scholar 

  • Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  • Bejan, A., Pfister, P.A.: Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Lett. Heat Mass Transf. 7(2), 97–106 (1980)

    Article  Google Scholar 

  • Benarji, N., Balaji, C., Venkateshan, S.: Unsteady fluid flow and heat transfer over a bank of flat tubes. Heat Mass Transf. 44(4), 445 (2008)

    Article  Google Scholar 

  • Bhattacharyya, S., Singh, A.: Augmentation of heat transfer from a solid cylinder wrapped with a porous layer. Int. J. Heat Mass Transf. 52(7), 1991–2001 (2009)

    Article  Google Scholar 

  • Cheng, P.: Mixed convection about a horizontal cylinder and sphere in a fluid-saturated porous medium. Int. J. Heat Mass Transf. 25(8), 1245–1246 (1982)

    Article  Google Scholar 

  • Combarnous, M.: Hydrothermal convection in saturated porous media. Adv. Hydrosci. 10, 231–307 (1975)

    Article  Google Scholar 

  • El Gharbi, N., Kheiri, A., El Ganaoui, M., Blanchard, R.: Numerical optimization of heat exchangers with circular and non-circular shapes. Case Stud. Therm. Eng. 6, 194–203 (2015)

    Article  Google Scholar 

  • Greenshields, C.J.: Openfoam user guide. OpenFOAM Foundation Ltd, version 3(1) (2015)

  • Han, J.: Heat transfer and friction characteristics in rectangular channels with rib tabulators. J. Heat Transf. 110, 321–328 (1988)

    Article  Google Scholar 

  • Hsu, C., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33(8), 1587–1597 (1990)

    Article  Google Scholar 

  • Ibrahim, T.A., Gomaa, A.: Thermal performance criteria of elliptic tube bundle in crossflow. Int. J. Therm. Sci. 48(11), 2148–2158 (2009)

    Article  Google Scholar 

  • Ishak, M., Tahseen, T.A., Rahman, M.M.: Experimental investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in crossflow. Int. J. Automot. Mech. Eng. 7, 900 (2013)

    Article  Google Scholar 

  • Layeghi, M.: Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle. J. Heat Transf. 130(1), 014501 (2008)

    Article  Google Scholar 

  • Layeghi, M., Nouri-Borujerdi, A.: Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media. J. Porous Media 7(3), 239–247 (2004)

    Article  Google Scholar 

  • Li, Z., Davidson, J.H., Mantell, S.C.: Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow. J. Heat Transf. 128(6), 564–570 (2006)

    Article  Google Scholar 

  • Matos, R., Laursen, T., Vargas, J., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int. J. Therm. Sci. 43(5), 477–487 (2004)

    Article  Google Scholar 

  • Matos, R., Vargas, J., Laursen, T., Saboya, F.: Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection. Int. J. Heat Mass Transf. 44(20), 3953–3961 (2001)

    Article  Google Scholar 

  • Mirabdolah Lavasani, A., Bayat, H., Maarefdoost, T.: Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow. Appl. Therm. Eng. 65(1–2), 85–93 (2014). https://doi.org/10.1016/j.applthermaleng.2013.12.078

    Article  Google Scholar 

  • Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics. Springer, Switzerland (2016)

    Book  Google Scholar 

  • Moulinec, C., Hunt, J., Nieuwstadt, F.: Disappearing wakes and dispersion in numerically simulated flows through tube bundles. Flow Turbul. Combust. 73(2), 95–116 (2004)

    Article  Google Scholar 

  • Nield, D., Kuznetsov, A.: Forced convection in porous media: transverse heterogeneity effects and thermal development. In: Vafai, K. (ed.) Handbook of Porous Media, pp. 143–193. Taylor & Francis (2005)

  • Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, New York (2006)

    Google Scholar 

  • Nouri-Borujerdi, A., Lavasani, A.M.: Pressure loss and heat transfer characterization of a cam-shaped cylinder at different orientations. J. Heat Transf. 130(12), 124503 (2008)

    Article  Google Scholar 

  • Odabaee, M., Hooman, K.: Application of metal foams in air-cooled condensers for geothermal power plants: an optimization study. Int. Commun. Heat Mass Transf. 38(7), 838–843 (2011)

    Article  Google Scholar 

  • Odabaee, M., Hooman, K.: Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 36, 456–463 (2012)

    Article  Google Scholar 

  • Odabaee, M., Hooman, K., Gurgenci, H.: Metal foam heat exchangers for heat transfer augmentation from a cylinder in cross-flow. Transp. Porous Media 86(3), 911–923 (2011)

    Article  Google Scholar 

  • Park, J.M., Kim, O.J., Kim, S.J., Shin, Y.-C.: Heat transfer characteristics of circular and elliptic cylinders in cross flow. Adv. Mech. Eng. 7(11), 1687814015619553 (2015)

    Article  Google Scholar 

  • Poulikakos, D., Bejan, A.: Fin geometry for minimum entropy generation in forced convection. J. Heat Transf. 104(4), 616–623 (1982)

    Article  Google Scholar 

  • Rashidi, S., Tamayol, A., Valipour, M.S., Shokri, N.: Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transf. 63, 91–100 (2013)

    Article  Google Scholar 

  • Rocha, L., Saboya, F., Vargas, J.: A comparative study of elliptical and circular sections in one-and two-row tubes and plate fin heat exchangers. Int. J. Heat Fluid Flow 18(2), 247–252 (1997)

    Article  Google Scholar 

  • Singh, R., Kasana, H.: Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24(13), 1841–1849 (2004)

    Article  Google Scholar 

  • Sobera, M.P., Kleijn, C.R., Van den Akker, H.E., Brasser, P.: Convective heat and mass transfer to a cylinder sheathed by a porous layer. AIChE J. 49(12), 3018–3028 (2003)

    Article  Google Scholar 

  • Swain, A., Das, M.K.: Convective heat transfer and pressure drop over elliptical and flattened tube. Heat Transf. Asian Res. 45(5), 462–481 (2016)

    Article  Google Scholar 

  • T’Joen, C., De Jaeger, P., Huisseune, H., Van Herzeele, S., Vorst, N., De Paepe, M.: Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes. Int. J. Heat Mass Transf. 53(15), 3262–3274 (2010)

    Article  Google Scholar 

  • Tahseen, T.A., Ishak, M., Rahman, M.: A numerical study of forced convection heat transfer over a series of flat tubes between parallel plates. J. Mech. Eng. Sci. 3, 271–280 (2012)

    Article  Google Scholar 

  • Tahseen, T.A., Rahman, M., Ishak, M.: Experimental study on heat transfer and friction factor in laminar forced convection over flat tube in channel flow. Procedia Eng. 105, 46–55 (2015)

    Article  Google Scholar 

  • Tauscher, R., Mayinger, F.: Heat transfer enhancement in a plate heat exchanger with rib-roughened surfaces. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yüncü, H. (eds.) Heat Transfer Enhancement of Heat Exchangers, pp. 207–221. Springer (1999)

  • Webb, R.: Principles of Enhanced Heat Transfer, pp. 332–340. Wiley, New York (1994)

    Google Scholar 

  • Wen, J., Tang, D., Wang, Z., Zhang, J., Li, Y.: Large eddy simulation of flow and heat transfer of the flat finned tube in direct air-cooled condensers. Appl. Therm. Eng. 61(2), 75–85 (2013)

    Article  Google Scholar 

  • Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Article  Google Scholar 

  • Wong, W.S., Rees, D.A.S., Pop, I.: Forced convection past a heated cylinder in a porous medium using a thermal nonequilibrium model: finite Peclet number effects. Int. J. Therm. Sci. 43(3), 213–220 (2004)

    Article  Google Scholar 

  • Yilmaz, M., Comakli, O., Yapici, S., Sara, O.N.: Performance evaluation criteria for heat exchangers based on first law analysis. J. Enhanc. Heat Transf. 12(2), 21–35 (2005)

    Article  Google Scholar 

  • Yilmaz, M., Sara, O., Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(4), 278–294 (2001)

    Article  Google Scholar 

  • Žukauskas, A.: Heat transfer from tubes in crossflow. Adv. Heat Transf. 8, 93–160 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saffar-Avval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvandifar, N., Saffar-Avval, M. & Amani, E. An Investigation of Flow Across Porous Layer Wrapped Flat Tube Banks. Transp Porous Med 127, 329–352 (2019). https://doi.org/10.1007/s11242-018-1195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1195-y

Keywords

Navigation