Skip to main content
Log in

Phosphate Removal Through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This study investigates the efficacy of nano-zero-valent iron (nZVI) permeable reactive barriers (PRBs) as an in situ phosphate removal method. Batch equilibrium experiments were conducted to determine maximum adsorption capacity of nano-iron particles for phosphate to be 54.34 mg-P/g-Fe. Short-term experiment was performed for a period of a month through three sandy soil columns with different configurations of nZVI reactive layers. Initial concentration of 25 (PO4–P) mg/L was introduced to the columns, while effluent samples were collected for analysis. Numerical model was developed to simulate the 1-D advective–dispersive reactive transport of phosphate through the porous media in the three columns. Sensitivity analysis of model parameters was performed, expressed by the change in the effluent concentration with respect to variation in the value of model critical parameters. Optimization of transport process in columns was based on minimizing the sum of squared error values between measured and predicted effluent concentration. Phosphate breakthrough curves implied that Column 2 (C2) with two reactive layers showed a slight better performance in phosphate removal than Column 1 (C1) with maximum efficiency of 98.9% after only 17 h from the beginning of the experiment, whereas phosphate concentration in Column 3 (C3) reached the full saturation by the 9th day. The model verification with experimental data showed a reasonable agreement with a correlation coefficient (R2) ranging from 0.97 to 0.99. The results in this study confirmed that such presented model can be used for the promotion of the preliminary design of PRBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aljamal, R., Eljamal, O., Khalil, A., Saha, B., Matsunaga, N.: Particle size and surface area improvement of nano iron material by adjusting the synthesis conditions. Proc. Int. Exch. Innov. Conf. Eng. Sci. (IEICES) 3, 39–42 (2017)

    Google Scholar 

  • Babatunde, A., Zhao, Y.: Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. J. Hazard. Mater. 184(1–3), 746–752 (2010)

    Article  Google Scholar 

  • Batu, V.: Applied Flow and Solute Transport Modeling in Aquifers: Fundamental Principles and Analytical and Numerical Methods. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  • Bear, J., Braester, C.: On the flow of two immscible fluids in fractured porous media. In: Iahr, (ed.) Developments in Soil Science, vol. 2, pp. 177–202. Elsevier, New York City (1972)

    Google Scholar 

  • Boeykens, S.P., Piol, M.N., Legal, L.S., Saralegui, A.B., Vázquez, C.: Eutrophication decrease: phosphate adsorption processes in presence of nitrates. J. Environ. Manag. 203, 888–895 (2017)

    Article  Google Scholar 

  • Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., Hirotsu, T.: Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 298(2), 602–608 (2006)

    Article  Google Scholar 

  • Craig, J.R., Rabideau, A.J., Suribhatla, R.: Analytical expressions for the hydraulic design of continuous permeable reactive barriers. Adv. Water Resour. 29(1), 99–111 (2006)

    Article  Google Scholar 

  • Dike, B., Okoro, B., Agunwamba, J.: Phosphate transport variation in sand column. Int. J. Water Resour. Environ. Eng. 5(6), 289–294 (2013)

    Google Scholar 

  • Duran, C., Ozdes, D., Gundogdu, A., Senturk, H.B.: Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J. Chem. Eng. Data 56(5), 2136–2147 (2011)

    Article  Google Scholar 

  • Eljamal, O., Okawauchi, J., Hiramatsu, K.: Product rich in phosphorus produced from phosphorus-contaminated water. In: Advanced Materials Research, pp. 261–265. Trans Tech Publ (2014)

  • Eljamal, O., Khalil, A.M., Sugihara, Y., Matsunaga, N.: Phosphorus removal from aqueous solution by nanoscale zero valent iron in the presence of copper chloride. Chem. Eng. J. 293, 225–231 (2016)

    Article  Google Scholar 

  • Erto, A., Lancia, A., Bortone, I., Di Nardo, A., Di Natale, M., Musmarra, D.: A procedure to design a permeable adsorptive barrier (PAB) for contaminated groundwater remediation. J. Environ. Manag. 92(1), 23–30 (2011)

    Article  Google Scholar 

  • Fischer, H.B., List, J.E., Koh, C.R., Imberger, J., Brooks, N.H.: Mixing in Inland and Coastal Waters. Elsevier, New York City (2013)

    Google Scholar 

  • Freundlich, H.: Uber die adsorption in losungen [adsorption in solution]. Z. Phys. Chem. 57, 385–490 (1906)

    Google Scholar 

  • Guan, X., Sun, Y., Qin, H., Li, J., Lo, I.M., He, D., Dong, H.: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 75, 224–248 (2015)

    Article  Google Scholar 

  • Hauduc, H., Takács, I., Smith, S., Szabo, A., Murthy, S., Daigger, G., Spérandio, M.: A dynamic physicochemical model for chemical phosphorus removal. Water Res. 73, 157–170 (2015)

    Article  Google Scholar 

  • Herzer, J., Kinzelbach, W.: Coupling of transport and chemical processes in numerical transport models. Geoderma 44(2–3), 115–127 (1989)

    Article  Google Scholar 

  • Huang, W., Zhang, Y., Li, D.: Adsorptive removal of phosphate from water using mesoporous materials: a review. J. Environ. Manag. 193, 470–482 (2017)

    Article  Google Scholar 

  • Hubbert, M.K., Darcy, H.: Theory of Ground-Water Motion and Related Papers. J. Geology. 48(8), 785–944 (1969)

    Article  Google Scholar 

  • Hussain, S., Aziz, H.A., Isa, M.H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S., Umar, M.: Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination 271(1–3), 265–272 (2011)

    Article  Google Scholar 

  • Hwang, Y.-H., Kim, D.-G., Shin, H.-S.: Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl. Catal. B 105(1–2), 144–150 (2011)

    Article  Google Scholar 

  • Ingebritsen, S.E., Sanford, W.E.: Groundwater in Geologic Processes. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Jeong, J.-Y., Ahn, B.-M., Kim, Y.-J., Park, J.-Y.: Continuous phosphorus removal from water by physicochemical method using zero valent iron packed column. Water Sci. Technol. 70(5), 895–900 (2014)

    Article  Google Scholar 

  • Jourak, A., Frishfelds, V., Lundström, T.S., Herrmann, I., Hedström, A.: Modeling of phosphate removal by fitra P in fixed-bed columns. In: International Conference on Environmental Science and Technology: 26/02/2011–28/02/2011 2011, pp. 241–248

  • Karageorgiou, K., Paschalis, M., Anastassakis, G.N.: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Hazard. Mater. 139(3), 447–452 (2007)

    Article  Google Scholar 

  • Khalil, A.M., Eljamal, O., Saha, B.B., Matsunaga, N.: Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system. Chemosphere 197, 502–512 (2018)

    Article  Google Scholar 

  • Knopman, D.S., Voss, C.I.: Behavior of sensitivities in the one-dimensional advection-dispersion equation: implications for parameter estimation and sampling design. Water Resour. Res. 23(2), 253–272 (1987)

    Article  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  • Lee, D.R.: The role of groundwater in eutrophication of a lake in glacial outwash terrain. Int. J. Speleol. 8(1), 10 (1976)

    Google Scholar 

  • Liu, H., Chen, T., Zou, X., Xie, Q., Qing, C., Chen, D., Frost, R.L.: Removal of phosphorus using NZVI derived from reducing natural goethite. Chem. Eng. J. 234, 80–87 (2013)

    Article  Google Scholar 

  • Maamoun, I.E., Osama, S., Tamer, N., Hiroki, S., Bidyut, B.: Matsunaga N (2017) Integrating nano-scale zero valent iron (nZVI) in phosphorus removal from aqueous solution through porous media: packed-column experiment. Proc. Int. Exch. Innov. Conf. Eng. Sci. (IEICES) 3, 25–30 (2017)

    Google Scholar 

  • Mortula, M.M., Abdalla, J., Ghadban, A.A.: Comparison of advection–diffusion models and neural networks for prediction of advanced water treatment effluent. Environ. Eng. Sci. 29(7), 660–668 (2012)

    Article  Google Scholar 

  • Mustafa, S., Bahar, A., Aziz, Z.A., Suratman, S.: Modelling contaminant transport for pumping wells in riverbank filtration systems. J. Environ. Manag. 165, 159–166 (2016)

    Article  Google Scholar 

  • Notodarmojo, S., Ho, G., Scott, W., Davis, G.: Modelling phosphorus transport in soils and groundwater with two-consecutive reactions. Water Res. 25(10), 1205–1216 (1991)

    Article  Google Scholar 

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C.: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013)

    Article  Google Scholar 

  • Schäfer, D., Schäfer, W., Kinzelbach, W.: Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J. Contam. Hydrol. 31(1), 167–186 (1998)

    Article  Google Scholar 

  • Sharma, H.D., Reddy, K.R.: Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies. Wiley, Hoboken (2004)

    Google Scholar 

  • Skopp, J.: Derivation of the Freundlich adsorption isotherm from kinetics. J. Chem. Educ. 86(11), 1341 (2009)

    Article  Google Scholar 

  • Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V., Baudu, M.: Phosphate removal from aqueous solution using ZVI/sand bed reactor: behavior and mechanism. Water Res. 99, 56–65 (2016)

    Article  Google Scholar 

  • Steefel, C.I., MacQuarrie, K.T.: Approaches to modeling of reactive transport in porous media. Rev. Mineral. Geochem. 34(1), 85–129 (1996)

    Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., Wang, H.P.: Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120(1), 47–56 (2006)

    Article  Google Scholar 

  • Taha, M.R., Ibrahim, A.: Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J. Environ. Chem. Eng. 2(1), 1–8 (2014)

    Article  Google Scholar 

  • van der Zee, S.E., Gjaltema, A.: Simulation of phosphate transport in soil columns I. Model development. Geoderma 52(1–2), 87–109 (1992)

    Google Scholar 

  • Wagner, B.J., Harvey, J.W.: Experimental design for estimating parameters of rate-limited mass transfer: analysis of stream tracer studies. Water Resour. Res. 33(7), 1731–1741 (1997)

    Article  Google Scholar 

  • Wang, Y., Sun, H., Duan, X., Ang, H.M., Tadé, M.O., Wang, S.: A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl. Catal. B 172, 73–81 (2015)

    Article  Google Scholar 

  • Wen, Z., Zhang, Y., Dai, C.: Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A 457, 433–440 (2014)

    Article  Google Scholar 

  • Wierenga, P.J., Brusseau, M.L.: Water and contaminant transport in the vadose zone. In: Singh, V.P. (ed.) Environmental Hydrology, pp. 165–191. Springer, Dordrecht (1995)

    Chapter  Google Scholar 

  • Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., Jia, H.: Insight into chemical phosphate recovery from municipal wastewater. Sci. Total Environ. 576, 159–171 (2017)

    Article  Google Scholar 

  • Zheng, C., Bennett, G.D.: Applied contaminant transport modeling: theory and practice. 440 p. Van Nostrand Reinhold, New York (1995)

  • Zhu, N., Qiao, J., Ye, Y., Yan, T.: Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column. J. Environ. Manag. 211, 73–82 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Eljamal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maamoun, I., Eljamal, O., Khalil, A.M.E. et al. Phosphate Removal Through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling. Transp Porous Med 125, 395–412 (2018). https://doi.org/10.1007/s11242-018-1124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1124-0

Keywords

Navigation