Skip to main content
Log in

Statistical Reconstruction of Microstructures Using Entropic Descriptors

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We report a multiscale approach of broad applicability to stochastic reconstruction of multiphase materials, including porous ones. The approach devised uses an optimization method, such as the simulated annealing (SA) and the so-called entropic descriptors (EDs). For a binary pattern, they quantify spatial inhomogeneity or statistical complexity at discrete length scales. The EDs extract dissimilar structural information to that given by two-point correlation functions (CFs). Within the SA, we use an appropriate cost function consisting of EDs or comprised of EDs and CFs. It was found that the stochastic reconstruction is computationally efficient when we begin with a preliminary synthetic configuration having in part desirable features. Another option is low-cost approximate reconstructing of the entire multiphase medium beyond the SA technique. The information included in the target ED-curve was utilized for this purpose. For a given volume fraction, the low-cost trial microstructures can be generated in two ways. In the first one, applied to ceramics and carbonate samples, the interpenetrating spheres generate a number of trial configurations. In the second one, with phase-EDs, here used to the sandstone sample, the overlapping superspheres do it. Both methods use a radius determined from the EDs-linked two-exponent power-law. However, the supersphere deformation parameter allows controlling of the spatial inhomogeneity of prototypical microstructures. At last, even for a hypothetical ED-curve (under reasonable assumptions), the specific microstructure can be found, if it is realizable for a given volume fraction. In general, the EDs-based methods offer a compromise between computational efficiency and the accuracy of reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \(^{*}\)Commonwealth Sci. and Ind. Res. Org. (Australia), Dr K.M. Gerke and Dr G. Mariethoz.

References

  • Bodla, K.K., Garimella, S.V., Murthy, J.Y.: 3D reconstruction and design of porous media from thin sections. Int. J. Heat Mass Transfer 73, 250 (2014)

    Article  Google Scholar 

  • Cule, D., Torquato, S.: Generating random media from limited microstructural information via stochastic optimization. J. Appl. Phys. 86, 3428 (1999)

    Article  Google Scholar 

  • Fra̧czek, D., Piasecki, R.: Decomposable multiphase entropic descriptor. Physica A 399, 75 (2014)

    Article  Google Scholar 

  • Fra̧czek, D., Olchawa, W., Piasecki, R., Wiśniowski, R.: Entropic descriptor based reconstruction of three-dimensional porous microstructures using a single cross-section. arXiv:1508.03857v2

  • Fra̧czek, D., Piasecki, R., Olchawa, W., Wiśniowski, R.: Controlling spatial inhomogeneity in prototypical multiphase microstructures. Acta Phys. Pol. B 48, 1433 (2017)

    Article  Google Scholar 

  • Garboczi, E.J., Bentz, D.P.: Multiscale analytical/numerical theory of the diffusivity of concrete. Adv. Cem. Based Mater. 8, 77 (1998)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions: II. algorithmic details and applications. Phys. Rev. E 77, 031135 (2008)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Natl Acad. Sci. USA 106, 17634 (2009)

    Article  Google Scholar 

  • Jiao, Y., Stillinger, F.H., Torquato, S.: Distinctive features arising in maximally random jammed packings of superballs. Phys. Rev. E 81, 041304 (2010)

    Article  Google Scholar 

  • Liasneuski, H., Hlushkou, D., Khirevich, S., Höltzel, A., Tallarek, U., Torquato, S.: Impact of microstructure on the effective diffusivity in random packings of hard spheres. J. Appl. Phys. 116, 034904 (2014)

    Article  Google Scholar 

  • Olchawa, W., Piasecki, R.: Speeding up of microstructure reconstruction: II. Application to patterns of poly-dispersed islands. Comput. Mater. Sci. 98, 390 (2015)

    Article  Google Scholar 

  • Olchawa, W., Piasecki, R., Wiśniowski, R., Fra̧czek, D.: Low-cost approximate reconstructing of heterogeneous microstructures. Comput. Mater. Sci. 123, 26 (2016)

    Article  Google Scholar 

  • Piasecki, R.: Entropic measure of spatial disorder for systems of finite-sized objects. Physica A 277, 157 (2000a)

    Article  Google Scholar 

  • Piasecki, R.: Detecting self-similarity in surface microstructures. Surf. Sci. 454–456, 1058 (2000b)

    Article  Google Scholar 

  • Piasecki, R., Martin, M.T., Plastino, A.: Inhomogeneity and complexity measures for spatial patterns. Physica A 307, 157 (2002)

    Article  Google Scholar 

  • Piasecki, R.: Versatile entropic measure of grey level inhomogeneity. Physica A 388, 2403 (2009a)

    Article  Google Scholar 

  • Piasecki, R.: Statistical mechanics characterization of spatio-compositional inhomogeneity. Physica A 388, 4229 (2009b)

    Article  Google Scholar 

  • Piasecki, R.: Microstructure reconstruction using entropic descriptors. Proc. R. Soc. A 467, 806 (2011)

    Article  Google Scholar 

  • Piasecki, R., Olchawa, W.: Speeding up of microstructure reconstruction: I. Application to labyrinth patterns. Model. Simul. Mater. Sci. Eng. 20, 055003 (2012)

    Article  Google Scholar 

  • Piasecki, R., Plastino, A.: Entropic descriptor of a complex behaviour. Physica A 389, 397 (2010)

    Article  Google Scholar 

  • Sahimi, M.: Heterogeneous Materials, Vols. I and II. Springer, New York (2003)

    Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley, Weinheim (2011)

    Book  Google Scholar 

  • Shah, N., Ottino, J.M.: Effective transport properties of disordered, multi-phase composites: application of real-space renormalization group theory. Chem. Eng. Sci. 41, 283 (1986)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. PRL 110, 078002 (2013)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Reconstruction of nonstationary disordered materials and media: watershed transform and cross-correlation function. Phys. Rev. E 91, 032401 (2015)

    Article  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials. Springer, New York (2002)

    Book  Google Scholar 

  • Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  Google Scholar 

  • Tsallis, C.: Approach of complexity in nature: entropic nonuniqueness. Axioms 5, 20 (2016)

    Article  Google Scholar 

  • Xu, H., Dikin, D.A., Burkhart, C., Chen, W.: Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput. Mater. Sci. 85, 206 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Piasecki.

Appendix

Appendix

Omitting in formulas dimension d for simplicity and using Eq. (1), the definition of the spatial statistical complexity \(C_{S}\) given by Eq. (5) can be rewritten as

$$\begin{aligned} C_S (k) = \frac{1}{\lambda (k)} \frac{[S_{\max } (k) - S(k)][S(k) - S_{\min } (k)]}{[S_{\max } (k) - S_{\min } (k)]} \equiv S_{\Delta } (k) \gamma (k) \end{aligned}$$
(A1)

where

$$\begin{aligned} \gamma (k) \equiv \frac{S(k) - S_{\min } (k)}{S_{\max } (k) - S_{\min } (k)}. \end{aligned}$$
(A2)

Thus, the \(C_{S}\) can be treated as the \(S_{\Delta }\) corrected by a factor \(\gamma \) linear in S. However, the whole descriptor \(C_{S}\) is a nonlinear function of S in contrast to the \(S_{\Delta }\) alone that is linear in S. This has some meaning for improving the quality of the stochastic reconstructions when the hybrid cost function is employed.

On the other hand, for \(0<\gamma (k)<1\), the power expansion of the function \([1 - \gamma (k)]^{-1}\) includes \(\gamma \)-terms of any order. Thus, taking into account all the components in the hypothetical series the simple relation is fulfilled at every scale k

$$\begin{aligned} S_{\Delta } (k) [1 + \gamma (k) + \gamma ^{2}(k) +\cdots ] = \frac{S_{\Delta } (k)}{1 - \gamma (k) } \equiv \frac{S_{\max } (k) - S_{\min } (k)}{\lambda (k)}. \end{aligned}$$
(A3)

The hybrid EDs-pair, \(\{S_{\Delta }(k),~C_{S}(k)\}~\equiv ~\{S_{\Delta }(k),~S_{\Delta }(k) \gamma ~(k)\}\), has been frequently employed by the entropic method of multiscale statistical reconstruction. One can suppose that the next term of the third order in S, i.e. the \(S_{\Delta }(k) \gamma ^{2}(k)\), may provide an additional information useful for the SA approach. At last, the slightly better structural accuracy could be potentially obtained by using the triplet of the hybrid EDs, \(\{S_{\Delta }(k),S_{\Delta }(k) \gamma (k),\, S_{\Delta }(k)\gamma ^{2}(k)\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piasecki, R., Olchawa, W., Fra̧czek, D. et al. Statistical Reconstruction of Microstructures Using Entropic Descriptors. Transp Porous Med 125, 105–125 (2018). https://doi.org/10.1007/s11242-018-1012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1012-7

Keywords

Navigation