Skip to main content
Log in

Calibrating and Scaling Semi-empirical Foam Flow Models for the Assessment of Foam-Based EOR Processes (in Heterogeneous Reservoirs)

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Models for simulating foam-based displacements fall into two categories: population-balance (PB) models that derive explicitly foam texture or bubble size from pore-level mechanisms related to lamellas generation and coalescence, and steady-state semi-empirical (SE) models that account implicitly for foam texture effects through a gas mobility reduction factor. This mobility reduction factor has to be calibrated from a large number of experiments on a case-by-case basis in order to match the physical effect of parameters impacting foam flow behaviour such as fluids saturation and velocity. This paper proposes a methodology to set up steady-state SE models of foam flow on the basis of an equivalence between SE model and PB model under steady-state flow conditions. The underlying approach consists in linking foam mobility and foam lamellas density (or texture) data inferred from foam corefloods performed with different foam qualities and velocities on a series of sandstones of different permeabilities. Its advantages lie in a deterministic non-iterative transcription of flow measurements into texture data and in a separation of texture effects and shear-thinning (velocity) effects. Then, scaling of foam flow parameters with porous medium permeability is established from the analysis of calibrated foam model parameters on cores of different permeability, with the help of theoretical representations of foam flow in a confined medium. Although they remain to be further confirmed from other well-documented experimental data sets, the significance of those scaling laws is great for the assessment of foam-based enhanced oil recovery (EOR) processes because foam EOR addresses heterogeneous reservoirs. Simulations of foam displacement in a reservoir cross section demonstrate the necessity to scale foam SE models with respect to facies heterogeneity for reliable evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvarez, J.M., Rivas, H.J., Rossen, W.R.: Unified model for steady-state foam behavior at high and low foam qualities. SPE J. 6(3), 325–333 (2001)

    Article  Google Scholar 

  • Bergeron, V., Radke, C.J.: Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8(12), 3020–3026 (1992)

    Article  Google Scholar 

  • Bernard, G., Jacobs, W.L.: Effect of foam on trapped gas saturation and on permeability of porous media to water. Soc. Pet. Eng. J. 5(04), 295–300 (1965)

    Article  Google Scholar 

  • Boeije, C.S., Rossen, W.R.: Fitting foam-simulation-model parameters to data: I. Coinjection of gas and liquid. SPE Reserv. Eval. Eng. 18(02), 264–272 (2015)

    Article  Google Scholar 

  • Bond, D.G., Holbrook, O.C.: Gas drive oil recovery. Patent no. US Pat 2866507 (1958)

  • Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10(2), 166 (1961)

    Article  Google Scholar 

  • Brooks, R.H., Corey, T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. IR2 (Proceedings of the American Society of Civil Engineers) (1966)

  • Chen, H.-L., Ke, M.-J., Chuang, T.-K., Flumerfelt, R.W.: Experimental studies of capillary pressure effects of foams in porous media. SPE paper 20069 (1990)

  • Chen, Q., Kovscek, A.R., Gerritsen, M.: Modeling foam displacement with the local-equilibrium approximation: theory and experimental verification. SPE J. 15(01), 171–183 (2010)

    Article  Google Scholar 

  • Cheng, L., Reme, A.B., Shan, D., Coombe, D.A., Rossen, W.R.: Simulating foam processes at high and low foam qualities. In: SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma (2000)

  • Dholkawala, Z.F., Sarma, H.K., Kam, S.I.: Application of fractional flow theory to foams in porous media. J. Pet. Sci. Eng. 57(1–2), 152–165 (2007)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, London (1992)

    Google Scholar 

  • Ettinger, R.A., Radke, C.J.: Influence of texture on steady foam flow in Berea sandstone. SPE Reserv. Eng. 7(1), 83–90 (1992)

    Article  Google Scholar 

  • Falls, A.H., Hirasaki, G.J., Patzek, T.W., Gauglitz, D.A., Miller, D.D., Ratulowski, T.: Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Reserv. Eng. 3(03), 884–892 (1988)

    Article  Google Scholar 

  • Farajzadeh, R., Lotfollahi, M., Eftekhari, A.A., Rossen, W.R., Hirasaki, G.J.H.: Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy Fuels 29(5), 3011–3018 (2015)

    Article  Google Scholar 

  • Friedmann, F., Chen, W.H., Gauglitz, P.A.: Experimental and simulation study of high-temperature foam displacement in porous media. SPE Reserv. Eng. 6(01), 37–45 (1991)

    Article  Google Scholar 

  • Gassara, O., Douarche, F., Braconnier, B., Bourbiaux, B.: Equivalence between semi-empirical and population-balance foam models. Transp. Porous Media 120(3), 473–493 (2017a)

    Article  Google Scholar 

  • Gassara, O., Douarche, F., Braconnier, B., Bourbiaux, B.: Calibrating and interpreting implicit-texture models of foam flow through porous media of different permeabilities. J. Petrol. Sci. Eng. 159, 588–602 (2017b)

    Article  Google Scholar 

  • Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57(19), 4037–4052 (2002)

    Article  Google Scholar 

  • Green, D.W., Willhite, G.P.: Enhanced oil recovery, volume 6 of SPE Textbook Series. In: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers (1998)

  • Heller, J.P., Boone, D.A., Watts, R.J.: Field test of \(\text{CO}_2\) mobility control at Rock Creek. Soc. Pet. Eng. Paper SPE-14395-MS (1985)

  • Hirasaki, G.J., Lawson, J.B.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Soc. Pet. Eng. J. 25(02), 176–190 (1985)

    Article  Google Scholar 

  • Holm, L.W.: Foam injection test in the Siggins field, Illinois. Soc. Petrol. Eng. 22, 1–499 (1970)

    Google Scholar 

  • Jonas, T.M., Chou, S.I., Vasicek, S.L.: Evaluation of a \(\text{ CO }_2\) foam field trial: Rangely Weber sand unit. Soc Pet Eng 74–92 (1990)

  • Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf A Physicochem. Eng. Asp. 318(1–3), 62–77 (2008)

    Article  Google Scholar 

  • Kam, S.I., Nguyen, Q.P., Li, Q., Rossen, W.R.: Dynamic simulations with an improved model for foam generation. SPE J. 12(01), 35–48 (2007)

    Article  Google Scholar 

  • Kapetas, L., Vincent-Bonnieu, S., Farajzadeh, R., Eftekhari, A.A., Mohd-Shafian, S.R., Kamarul Bahrim, R.Z., Rossen, W.R.: Effect of permeability on foam-model parameters—an integrated approach from coreflood experiments through to foam diversion calculations. In: 18th European Symposium on Improved Oil Recovery, Dresden, 14–16 April (2015)

  • Khatib, Z.I., Hirasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Reserv. Eng. 3(3), 919–926 (1988)

    Article  Google Scholar 

  • Kovscek, A.R., Bertin, H.J.: Foam mobility in heterogeneous porous media. Transp. Porous Media 52(1), 37–49 (2003)

    Article  Google Scholar 

  • Kovscek, A.R., Radke, C.J.: Fundamentals of foam transport in porous media. In: Comstock, M.J., Schramm, L.L. (eds.) Foams: Fundamentals and Applications in the Petroleum Industry, American Chemical Society Advances in Chemistry (1994)

  • Kovscek, A.R., Patzek, T.W., Radke, C.J.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone. Chem. Eng. Sci. 50(23), 3783–3799 (1995)

    Article  Google Scholar 

  • Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Lawson, J.B., Reisberg, J.: Alternate slugs of gas and dilute surfactant for mobility control during chemical flooding. In: SPE/DOE Enhanced Oil Recovery Symposium (1980)

  • Lotfollahi, M., Farajzadeh, R., Delshad, M., Varavei, A., Rossen, W.R.: Comparison of implicit-texture and population-balance foam models. J Nat. Gas Sci. Eng. 31, 184–197 (2016)

    Article  Google Scholar 

  • Lotfollahi, M., Kim, I., Beygi, M.R., Worthen, A.J., Huh, C., Johnston, K.P., Wheeler, M.F., DiCarlo, D.A.: Foam generation hysteresis in porous media: experiments and new insights. Transp. Porous Media 116(2), 687–703 (2017)

    Article  Google Scholar 

  • Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media. Part 1: the dry-out effect. Energy Fuels 27(5), 2363–2375 (2013)

    Article  Google Scholar 

  • Ma, K., Farajzadeh, R., Lopez-Salinas, J.L., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Non-uniqueness, numerical artifacts, and parameter sensitivity in simulating steady-state and transient foam flow through porous media. Transp. Porous Media 102(3), 325–348 (2014)

    Article  Google Scholar 

  • Marle, C.M.: Multiphase Flow in Porous Media, 3rd edn. Gulf Publishing Company, Houston (1981)

    Google Scholar 

  • Martinsen, H., Vassenden, F.: Foam assisted water alternating gas (FAWAG) process on Snorre. In: 10th European Symposium on Improved Oil Recovery, Brighton, UK (1999)

  • Moradi-Araghi, A., Johnston, E.L., Zornes, D.R., Harpole, K.J.: Laboratory Evaluation of Surfactants for \(\text{ CO }_2\)-foam Applications at the South Cowden Unit. International Symposium on Oilfield Chemistry, Houston (1997)

    Google Scholar 

  • Osterloh, W.T., Jante, M.J.: Effects of gas and liquid velocity on steady-state foam flow at high temperature. Soc. Pet. Eng. (SPE/DOE 24179) 237–248 (1992)

  • Patzek, T.W.: Description of foam flow in porous media by the population balance method. In Duane, H.S. (ed.) Surfactant-Based Mobility Control, American Chemical Society Symposium Series (1988)

  • Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation, Developments in Petroleum Science, vol. 6. Elsevier, Amsterdam (1977)

    Google Scholar 

  • Pedroni, L., Nabzar, L.: New insights on foam rheology in porous media. In: Rio Oil and Gas Expo and Conference 2016 Proceedings (IBP. ISSN 2525 7560) (2016)

  • Rossen, W.R., Gauglitz, P.A.: Percolation theory of creation and mobilization of foams in porous media. AIChE J. 36(8), 1176–1188 (1990)

    Article  Google Scholar 

  • Rossen, W.R., Zhou, Z.H.: Modeling foam mobility at the limiting capillary pressure. SPE Adv. Technol. Ser. 3(01), 146–153 (1995)

    Article  Google Scholar 

  • Sheng, J.J. (ed.): Foams and their applications in enhancing oil recovery. In: Enhanced Oil Recovery Field Case Studies, pp. 251–280. Elsevier, Amsterdam (2013)

  • Trangenstein, J.A., Bell, J.B.: Mathematical structure of the black-oil model for petroleum reservoir simulation. SIAM J. Appl. Math. 49(3), 749–783 (1989)

    Article  Google Scholar 

  • Zhou, Z., Rossen, W.R.: Applying fractional flow theory to foam processes at the limiting capillary pressure. SPE Adv. Technol. Ser. 3(01), 154–162 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Nabzar and L. G. Pedroni for useful discussions and IFPEN for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Douarche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Determination of Saturation at Steady State in the Presence of Foam

The water saturation is determined by taking into account the invariance of relative permeability to water whether foam is present or not. At steady state, the measured pressure drop during foam flow can be written using Darcy’s law applied to foam considered as a single fluid or using generalized Darcy’s law applied to water phase, that is:

$$\begin{aligned} \varDelta P = \frac{\mu _\mathrm{f}u \; L}{k} = \frac{\mu _\mathrm{w} (1- f_\mathrm{g}) u \; L}{k k_\mathrm{rw}}, \end{aligned}$$

Hence, one infers

$$\begin{aligned} k_\mathrm{rw}= \frac{\mu _\mathrm{w} (1- f_\mathrm{g})}{\mu _\mathrm{f}}. \end{aligned}$$

Power law functions are considered to model relative permeability functions versus saturation in the framework of this paper, that is \(k_\mathrm{rw}= k_\mathrm{rw}^0 S^{n_\mathrm{w}}\) with \(S = (S_\mathrm{w}-S_\mathrm{wr})/(1-S_\mathrm{wr}-S_\mathrm{gc})\) the normalized water saturation, \(S_\mathrm{wr}\) the residual water saturation and \(S_\mathrm{gc}\) the critical gas saturation. \(k_\mathrm{rw}^0\) is the maximum relative permeability to water and \(n_\mathrm{w}\) the relative permeability exponent. Water saturation can then be determined as:

$$\begin{aligned} S_\mathrm{w} = S_\mathrm{wr} + (1-S_\mathrm{wr}-S_\mathrm{gc}) \left( \frac{ \mu _\mathrm{w} (1- f_\mathrm{g}) }{ \mu _\mathrm{f}k_\mathrm{rw}^0} \right) ^{1/n_\mathrm{w}}, \end{aligned}$$

or more directly from measured steady-state pressure drop as:

$$\begin{aligned} S_\mathrm{w} = S_\mathrm{wr} + (1-S_\mathrm{wr}-S_\mathrm{gc}) \left( \frac{ \mu _\mathrm{w} (1- f_\mathrm{g}) u \; L }{ k_\mathrm{rw}^0 \; k \varDelta P} \right) ^{1/n_\mathrm{w}}. \end{aligned}$$

Evolution of Transition Parameter \(\varTheta \) with k According to Static and Dynamic Viewpoints

The evolution of transition parameter \(\varTheta \) with permeability is discussed, considering either of the two (quasi-) static and dynamic viewpoints of foam flow within porous media.

First, the static assumption implies that coalescence of foam occurs over a \(P_\mathrm{c}\) interval centred around the \(P_\mathrm{c}^*\) value corresponding to the disjoining pressure \(\varPi \) of the foam. That \(P_\mathrm{c}\) interval, denoted \([\varPi ^-, \varPi ^+]\), is the same whatever the permeability of the porous medium. For a porous medium of permeability \(k_\text {ref}\), the width of the saturation transition, i.e. \((S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref}\), can then be expressed as \(P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^-) - P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^+)\) that is also equal to \(\pi / \varTheta _\text {ref}\).

For a porous medium of arbitrary permeability k, we can also write \(S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}= P_\mathrm{c}^{-1}(\varPi ^-) - P_\mathrm{c}^{-1}(\varPi ^+)\) that is also equal to \(\pi / \varTheta \). From these two equalities, we infer the scaling relationship as follows:

$$\begin{aligned} \frac{S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}}{(S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref}} = \frac{\varTheta _\text {ref}}{\varTheta } = \frac{P_\mathrm{c}^{-1}(\varPi ^-) - P_\mathrm{c}^{-1}(\varPi ^+)}{P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^-) - P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^+)}. \end{aligned}$$

That is,

$$\begin{aligned} \varTheta = \varTheta _\text {ref} \frac{P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^-) - P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^+)}{P_\mathrm{c}^{-1}(\varPi ^-) - P_\mathrm{c}^{-1}(\varPi ^+)}. \end{aligned}$$

If one considers a narrow disjoining pressure interval, then the variation of inverse \(P_\mathrm{c}\) and \(P_{\mathrm{c},\text {ref}}\) functions over \(\varPi \) interval can be, respectively, approximated as \(P_\mathrm{c}^{-1}(\varPi ^-) - P_\mathrm{c}^{-1}(\varPi ^+) = S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}\approx \bigl ( \frac{\mathrm {d}S_\mathrm{w}}{\mathrm {d}P_\mathrm{c}} \bigr )_\varPi (\varPi ^- - \varPi ^+)\) and \(P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^-) - P_{\mathrm{c},\text {ref}}^{-1}(\varPi ^+) = (S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref} \approx \bigl ( \frac{\mathrm {d}S_\mathrm{w}}{\mathrm {d}P_{\mathrm{c},\text {ref}}} \bigr )_\varPi (\varPi ^- - \varPi ^+)\). This leads to:

$$\begin{aligned} \varTheta = \varTheta _\text {ref} \frac{\left( \frac{\mathrm {d}S_\mathrm{w}}{\mathrm {d}P_{\mathrm{c},\text {ref}}} \right) _\varPi }{\left( \frac{\mathrm {d}S_\mathrm{w}}{\mathrm {d}P_\mathrm{c}} \right) _\varPi }. \end{aligned}$$

That evolution of \(\varTheta \) as a function of k cannot be predicted a priori from this relationship, even for homothetic porous media, because it depends on the shape of the \(P_\mathrm{c}\) and \(P_{\mathrm{c},\text {ref}}\) curves with respect to the value of \(\varPi \).

Considering now the dynamic assumption, the collapse of foam films occurs over an invariant interval of the transverse velocity gradient within pores, denoted \([w_\text {max}^{\prime -}, w_\text {max}^{\prime +}]\). As explained before, to that fixed transverse velocity interval corresponded a pressure gradient interval \([2 \mu w_\text {max}^{\prime -} / r, 2 \mu w_\text {max}^{\prime +} / r]\) along flow direction and a critical capillary pressure interval \([P_\mathrm{c}^{*-}, P_\mathrm{c}^{*+}]\) for a porous medium with given characteristic pore radius r and permeability k (\(r \sim \sqrt{k}\)). The invariance of \([w_\text {max}^{\prime -}, w_\text {max}^{\prime +}]\) interval for different porous media implies that the interval \([r P_\mathrm{c}^{*-} , r P_\mathrm{c}^{*+} ]\) is constant since the pressure gradient and capillary pressure are in proportion one another. The scaling relationship for coalescence interval can then be expressed as an invariance of the product \(rP_\mathrm{c}^*\) that we develop hereafter.

For two porous media with respective characteristic pore radii r and \(r_\text {ref}\), the scaling relationship can be written over \([w_\text {max}^{\prime -}, w_\text {max}^{\prime +}]\) interval as \(r P_\mathrm{c}(S_\mathrm{w}^{\text {opt}}) = r_\text {ref} P_{\mathrm{c},\text {ref}} [ (S_\mathrm{w}^{\text {opt}})_\text {ref} ]\) and \(r P_\mathrm{c}(S_\mathrm{w}^{\text {min}}) = r_\text {ref} P_{\mathrm{c},\text {ref}} [ (S_\mathrm{w}^{\text {min}})_\text {ref} ]\), that is,

$$\begin{aligned} r \left[ P_\mathrm{c}(S_\mathrm{w}^{\text {opt}}) - P_\mathrm{c}(S_\mathrm{w}^{\text {min}}) \right] = r_\text {ref} \left[ P_{\mathrm{c},\text {ref}}((S_\mathrm{w}^{\text {opt}})_\text {ref}) - P_{\mathrm{c},\text {ref}}((S_\mathrm{w}^{\text {min}})_\text {ref}) \right] . \end{aligned}$$

For a generally abrupt transition, the previous relationship can be written as:

$$\begin{aligned} r \left( S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}\right) \left( \frac{\mathrm {d}P_\mathrm{c}}{\mathrm {d}S_\mathrm{w}} \right) _{S_\mathrm{w}^{*}} = r_\text {ref} \left[ (S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref} \right] \left( \frac{\mathrm {d}P_{\mathrm{c},\text {ref}}}{\mathrm {d}S_\mathrm{w}} \right) _{(S_\mathrm{w}^{*})_\text {ref}}. \end{aligned}$$

Taking into account the relationship established above between \(\varTheta \) and saturation interval (Eq. 28), we infer the following general relation between \(\varTheta \) and \(\varTheta _\text {ref}\) that holds for any couple of porous media:

$$\begin{aligned} \varTheta = \varTheta _\text {ref} \frac{(S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref}}{S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}} = \varTheta _\text {ref} \frac{r \left( \frac{\mathrm {d}P_\mathrm{c}}{\mathrm {d}S_\mathrm{w}} \right) _{S_\mathrm{w}^{*}}}{r_\text {ref} \left( \frac{\mathrm {d}P_{\mathrm{c},\text {ref}}}{\mathrm {d}S_\mathrm{w}} \right) _{(S_\mathrm{w}^{*})_\text {ref}}}. \end{aligned}$$

For two homothetic porous media of characteristic pore radii r and \(r_\text {ref}\), \(P_\mathrm{c}(S_\mathrm{w}) = \frac{r_\text {ref}}{r} P_{\mathrm{c},\text {ref}} (S_\mathrm{w})\), then the invariance of \(r P_\mathrm{c}^*\), i.e. \(r P_\mathrm{c}(S_\mathrm{w}^{*}) = r_\text {ref} P_{\mathrm{c},\text {ref}}[(S_\mathrm{w}^{*})_\text {ref}]\), implies that \( P_{\mathrm{c},\text {ref}}(S_\mathrm{w}^{*}) = P_{\mathrm{c},\text {ref}}[(S_\mathrm{w}^{*})_\text {ref}]\), i.e. that \(S_\mathrm{w}^{*}= (S_\mathrm{w}^{*})_\text {ref}\), which is also verified for the optimal and minimal saturation. Hence, \(S_\mathrm{w}^{\text {opt}}- S_\mathrm{w}^{\text {min}}= (S_\mathrm{w}^{\text {opt}})_\text {ref} - (S_\mathrm{w}^{\text {min}})_\text {ref}\) and \(\varTheta = \varTheta _\text {ref}\).

To end with, the transition saturation interval and the transition parameter \(\varTheta \) are invariant for homothetic porous media under dynamic assumption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gassara, O., Douarche, F., Braconnier, B. et al. Calibrating and Scaling Semi-empirical Foam Flow Models for the Assessment of Foam-Based EOR Processes (in Heterogeneous Reservoirs). Transp Porous Med 131, 193–221 (2020). https://doi.org/10.1007/s11242-018-01223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-01223-5

Keywords

Navigation