Skip to main content
Log in

Implementation Strategies for Accurate and Efficient Control Volume-Based Two-Phase Hydrothermal Flow Solutions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Numerical models of magmatic hydrothermal systems have become powerful tools for linking surface and seafloor observations to chemical and fluid-dynamic processes at depth. This task requires resolving multi-phase flow over large distances of several kilometers, a wide range of pressure (p) and temperature (T) conditions, and over timescales of several thousands of years. The key numerical challenge is that realistic simulations have to consider the high nonlinearity and strong coupling of the governing conservation equations for mass and energy, while also being numerically efficient so that the required spatial and temporal scales can be resolved. Here we outline possible solutions to this problem by evaluating different implementation strategies and presenting a numerical scheme for fully coupled accurate and efficient flow solutions. The general scheme, based on the Newton–Raphson (NR) method, is presented for the simplified case of 2-D pure water convection and uses a control volume discretization on unstructured meshes. We find that the presented techniques significantly reduce the computational effort with respect to sequential/decoupled schemes. Key to this is a theta-time-differencing method for better accuracy, stability and convergence behavior of the NR-iterations, as well as improvements regarding upwinding. These features make the presented methods useful for coupled simulations of magmatic hydrothermal systems and a potential basis for future 3-D multi-phase codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andersen, C., Rüpke, L., Hasenclever, J., Grevemeyer, I., Petersen, S.: Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge. Geology (2015). https://doi.org/10.1130/G36113.1

  • Bauer, O.: PROST 4.1 PROperties of Water and STeam. http://fluidos.etsii.upm.es/faculty/Jaime_Carpio/Fumatas_negas/PROSTPropertiesof550WaterandSteam.htm (1998)

  • Cathles, L.M.: What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits. Miner. Depos. 46(5–6), 639–657 (2011). https://doi.org/10.1007/s00126-010-0292-9

    Article  Google Scholar 

  • Coumou, D., Driesner, T., Heinrich, C.A.: The structure and dynamics of mid-ocean ridge hydrothermal systems. Science 321(5897), 1825–1828 (2008). https://doi.org/10.1126/science.1159582

    Article  Google Scholar 

  • Coumou, D., Driesner, T., Weis, P., Heinrich, C.A.: Phase separation, brine formation, and salinity variation at Black Smoker hydrothermal systems. J. Geophys. Res. (2009). https://doi.org/10.1029/2008jb005764

  • Driesner, T., Heinrich, C.A.: The system H\(_2\)O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 \(^\circ \)C, 0 to 5000 bar, and 0 to 1 X-NaCl. Geochimica Et Cosmochimica Acta 71(20), 4880–4901 (2007). https://doi.org/10.1016/i.gca.2006.01.033

    Article  Google Scholar 

  • Durlofsky, L.J.: Accuracy of mixed and control-volume finite-element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994). https://doi.org/10.1029/94wr00061

    Article  Google Scholar 

  • Faust, C.R., Mercer, J.W.: A theoretical analysis of fluid flow and energy transport in hydrothermal systems. Open-File Report (1977)

  • Faust, C.R., Mercer, J.W.: Geothermal reservoir simulation. 1. Mathematical-models for liquid-dominated and vapor-dominated hydrothermal systems. Water Resour. Res. 15(1), 23–30 (1979). https://doi.org/10.1029/WR015i001p00023

    Article  Google Scholar 

  • Fontaine, F.J., Wilcock, W.S.D., Butterfield, D.A.: Physical controls on the salinity of mid-ocean ridge hydrothermal vent fluids. Earth Planet. Sci. Lett. 257(1–2), 132–145 (2007). https://doi.org/10.1016/j.epsl.2007.02.027

    Article  Google Scholar 

  • Fontaine, F.J., Cannat, M., Escartin, J., Crawford, W.C.: Along-axis hydrothermal flow at the axis of slow spreading mid-ocean ridges: insights from numerical models of the Lucky Strike vent field (MAR). Geochem. Geophys. Geosyst. 15(7), 2918–2931 (2014). https://doi.org/10.1002/2014GC005372

    Article  Google Scholar 

  • Garg, S.K., Pritchet, J.W.: On pressure-work, viscous dissipation and the energy balance relation for geothermal reservoirs. Adv. Water Resour. 1, 41–47 (1977)

    Article  Google Scholar 

  • Geiger, S., Driesner, T., Heinrich, C., Matthäi, S.: Multiphase thermohaline convection in the earth’s crust: I. A new finite element–finite volume solution technique combined with a new equation of state for \(\text{ NaCl }{-}\text{ H }_2\text{ O }\). Transp. Porous Media 63(3), 399–434 (2006). https://doi.org/10.1007/s11242-005-0108-z

    Article  Google Scholar 

  • Gruen, G., Weis, P., Driesner, T., Heinrich, C.A., de Ronde, C.E.J.: Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet. Sci. Lett. 404, 307–318 (2014). https://doi.org/10.1016/j.epsl.2014.07.041

    Article  Google Scholar 

  • Hasenclever, J., Theissen-Krah, S., Rupke, L.H., Morgan, J.P., Iyer, K., Petersen, S., Devey, C.W.: Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature 508(7497), 508–512 (2014). https://doi.org/10.1038/nature13174

    Article  Google Scholar 

  • Hayba, D.O., Ingebritsen, S.E.: The computer model HYDROTHERM, a three-dimensional finite difference model to simulate ground-water flow and heat transport in the temperature range of 0 to \(1{,}200\,^{\circ }\text{ C }\). Water-Resources Investigations (1994)

  • Hayba, D.O., Ingebritsen, S.E.: Multiphase groundwater flow near cooling plutons. J. Geophys. Res. Solid Earth 102(B6), 12235–12252 (1997). https://doi.org/10.1029/97JB00552

    Article  Google Scholar 

  • Huber, R., Helmig, R.: Multiphase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach. Int. J. Numer. Methods Fluids 29, 899–920 (1999)

    Article  Google Scholar 

  • Huyakorn, P., Pinder, G.F.: A pressure-enthalpy finite element model for simulating hydrothermal reservoir. Math. Comput. Simul. 20(3), 167–178 (1978)

    Article  Google Scholar 

  • Ingebritsen, S.E., Geiger, S., Hurwitz, S., Driesner, T.: Numerical simulation of magmatic hydrothermal systems. Rev. Geophys. 47, 33 (2010). https://doi.org/10.1029/2009rg000287

    Google Scholar 

  • Jupp, T., Schultz, A.: A thermodynamic explanation for black smoker temperatures. Nature 403(6772), 880–883 (2000)

    Article  Google Scholar 

  • Kipp Jr, K.L., Hsieh, P.A., Charlton, S.R.: Guide to the revised ground-water flow and heat transport simulator: HYDROTHERM-version 3. In: U.S. Geological Survey Techniques and Methods, vol. 6, No. A25 (2008)

  • Kissling, W.M.: Transport of three-phase hyper-saline brines in porous media: theory and code implementation. Transp. Porous Media 61(1), 25–44 (2005). https://doi.org/10.1007/s11242-004-3306-1

    Article  Google Scholar 

  • Lemonnier, A.: Improvement of reservoir simulation by a triangular discontinuous finite element method. In: Society of Petroleum Engineers of AIME, vol. 8249 (1979)

  • Lewis, K.C., Lowell, R.P.: Numerical modeling of two-phase flow in the NaCl–H\(_2\)O system: introduction of a numerical method and benchmarking. J. Geophys. Res. (2009). https://doi.org/10.1029/2008jb006029

  • Lowell, R.P.: Modeling continental and submarine hydrothermal systems. Rev. Geophys. 29(3), 457–476 (1991). https://doi.org/10.1029/91rg01080

    Article  Google Scholar 

  • McCartin, B.J.: Seven deadly sins of numerical computation. Am. Math. Mon. 105(10), 929–941 (1998). https://doi.org/10.2307/2589285

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 user’s guide, version 2.1. Volume Report LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley, CA (2012)

  • Scott, S., Driesner, T., Weis, P.: Geologic controls on supercritical geothermal resources above magmatic intrusions. Nat. Commun. 6, 6 (2015). https://doi.org/10.1038/ncomms8837

    Article  Google Scholar 

  • Theissen-Krah, S., Rüpke, L.H., Hasenclever, J.: Modes of crustal accretion and their implications for hydrothermal circulation. Geophys. Res. Lett. 43(3), 1124–1131 (2016). https://doi.org/10.1002/2015GL067335

    Article  Google Scholar 

  • Travis, B.J., Janecky, D.R., Rosenberg, N.D.: Three-dimensional simulations of hydrothermal circulation at mid-ocean ridges. Geophys. Res. Lett. 18(8), 1441–1444 (1991)

    Article  Google Scholar 

  • Weis, P., Driesner, T., Coumou, D., Geiger, S.: Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14(3), 347–371 (2014). https://doi.org/10.1111/gfl.12080

    Article  Google Scholar 

  • Weis, P., Driesner, T., Heinrich, C.A.: Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338(6114), 1613–1616 (2012)

    Article  Google Scholar 

  • Zyvoloski, G.: FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. In: Los Alamos National Laboratory Document, vol. LAUR-07-3359 (2007)

  • Zyvoloski, G.A., Robinson, B.A., Dash, Z.D., Trease, L.L.: Summary of models and methods for the FEHM application—a finite-element heat- and mass-transfer code. In: Los Alamos National Laboratory, vol. LA-13307-MS (1997)

Download references

Acknowledgements

We thank Kayla Lewis, Thomas Driesner, and two anonymous reviewers for their helpful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falko Vehling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vehling, F., Hasenclever, J. & Rüpke, L. Implementation Strategies for Accurate and Efficient Control Volume-Based Two-Phase Hydrothermal Flow Solutions. Transp Porous Med 121, 233–261 (2018). https://doi.org/10.1007/s11242-017-0957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0957-2

Keywords

Navigation