Skip to main content
Log in

On the Flow Conditions at the Fluid: Permeable Surface Interface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present study covers the problem of rotation of a porous disk under a viscous incompressible fluid that fills the half-space above the disk, which is the generalization of the von Karman’s problem. It is found that, instead of solving the exact problem, which is rather complicated by coupling the motions of the free fluid and that contained inside the permeable disk, it is sufficient to solve a much simpler problem of the motion of the free fluid placed onto a permeable plane. Assuming the flow in the permeable disk is described by the Brinkman equations, we obtain a self-similar formulation of the problem. Employing this formulation, we also show that the boundary condition associated with continuity of the tangential strains and tangential velocity components is satisfied at the fluid–porous body interface. The coefficient for the vertical velocity component is furthermore obtained. Various extreme cases are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barbir, F.: PEM fuel cells. In: Sammes, N. (ed.) Fuel Cell Technology, Series in Engineering Materials and Processes, pp. 27–51. Springer, Berlin (2006)

    Google Scholar 

  • Barenblatt, G.I., Cherny, G.G.: On the moment correlations on discontinuity surfaces in dissipative media. Appl. Math. Mech. 27, 784–793 (1963)

    Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary condition at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Benson, S.M., Cole, D.R.: \(\text{ CO }_{2}\) sequestration in deep sedimentary formations. Elements 4, 325–331 (2008)

    Article  Google Scholar 

  • Brinkman, H.C.: A calculation of the viscous force exerted by of a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    Google Scholar 

  • Brookins, D.G.: Geochemical Aspects of Radioactive Waste Disposal. Springer, Berlin (2012)

    Google Scholar 

  • Chand, R.: Electro-thermal convection in a Brinkman porous medium saturated by nanofluid. Ain Shams Eng. J. (2016). doi:10.1016/j.asej.2015.10.008 (In Press )

  • Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, vol. 66, pp. 99–105. American Society of Mechanical Engineers, New York (1995)

    Google Scholar 

  • Cochran, W.G.: The flow due to a rotating disk. Proc. Camb. Philos. Soc. 30, 365–375 (1934)

    Article  Google Scholar 

  • dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)

    Article  Google Scholar 

  • Devarapalli, M., Lawrence, B.J., Madihally, S.V.: Modeling nutrient consumptions in large flow-through bioreactors for tissue engineering. Biotechnol. Bioeng. 103, 1003–1015 (2009)

    Article  Google Scholar 

  • Givler, R.C., Altobelli, S.A.: A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 158, 355–370 (1994)

    Article  Google Scholar 

  • Goldstein, R.V., Gordeyev, YuN, Chizhov, YuL: Von Karman’s problem for a rotating permeable disk. Proc. Rus. Acad. Sci. Fluid Dyn. 1, 72–80 (2012)

    Google Scholar 

  • Guta, L., Sundar, S.: Navier–Stokes–Brinkman system for interaction of viscous waves with a submerged porous structure. Tamkang J. Math. 41, 217–243 (2010)

    Google Scholar 

  • Hidalgo-Bastida, L.A., Thirunavukkarasu, S., Griffiths, S., Cartmell, S.H., Naire, S.: Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications. Biotechnol. Bioeng. 109, 1095–1099 (2012)

    Article  Google Scholar 

  • Iliev, O., Laptev, V.: On numerical simulation of flow through oil filters. Comput. Vis. Sci. 6, 139–146 (2004)

    Article  Google Scholar 

  • Joseph, D.D., Tao, L.N.: Lubrication of a porous Bearing—Stokes’ solution. J. Appl. Mech. 33, 753–760 (1966)

    Article  Google Scholar 

  • Kang, Q., Lichtner, P.C., Viswanathan, H.S., Abdel-Fattah, A.I.: Pore scale modeling of reactive transport involved in geologic \(\text{ CO }_{2}\) sequestration. Transp. Porous Med. 82, 197–213 (2010)

    Article  Google Scholar 

  • Kármán, ThV: Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  • Kuznetsov, A.V.: Influence of the stress jump condition at the porous-medium/clear fluid interface on a flow at a porous wall. Int. Commun. Heat Mass Transf. 24, 401–410 (1997)

    Article  Google Scholar 

  • Lundren, N.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  Google Scholar 

  • MacQuarrie, K.T.B., Ulrich Mayer, K.: Reactive transport modeling in fractured rock: a state-of-the-science review. Earth Sci. Rev. 72, 189–227 (2005)

    Article  Google Scholar 

  • Neale, G., Nader, W.: Practical significance of Brinkman extension of Darsy’s law: coupled parallel flow within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)

    Article  Google Scholar 

  • Nield, D.A.: The Beavers–Joseph boundary conditions and related matters: a historical and critical note. Transp. Porous Med. 78, 537–540 (2009)

    Article  Google Scholar 

  • Prinos, P., Sofialidis, D., Keramaris, E.: Turbulent flow over and within a porous bed. J. Hydraul. Eng. 129, 720–733 (2003)

    Article  Google Scholar 

  • Richardson, S.A.: A model for the boundary conditions of a porous material. J. Fluid Mech. 49, 327–336 (1971)

    Article  Google Scholar 

  • Saffman, P.: On the boundary conditions at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  • Shivakumara, I.S., Dhananjaya, M.: Penetrative Brinkman convection in an anisotropic porous layer saturated by a nanofluid. Ain Shams Eng. J. 6, 703–713 (2015)

    Article  Google Scholar 

  • Silva, R.A., de Lemos, M.J.S.: Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf. 46, 5113–5121 (2003)

    Article  Google Scholar 

  • Slezkin, N.A.: The Dynamics of Viscous Incompressible Fluid. State Publisher of Engineering and Theoretical Literature, Moscow (1955)

    Google Scholar 

  • Taylor, G.: A model for the boundary conditions of a porous material. J. Fluid. Mech. 49, 319–326 (1971)

    Article  Google Scholar 

  • Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prashar, R., Tyagi, H.: Small particles, big impacts: A review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013)

    Article  Google Scholar 

  • Truskey, G.A., Yuan, F., Katz, D.F.: Transport Phenomena in Biological Systems. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  • Vadasz, P.: Fluid flow through heterogeneous porous media in a rotating square channel. Transp. Porous Med. 12, 43–54 (1993)

    Article  Google Scholar 

  • Vadasz, P.: Fluid Flow and Heat Transfer in Rotating Porous Media. Springer, Berlin (2016)

    Book  Google Scholar 

  • Wong, K.V., de Leon, O.: Applications of nanofluids: current and future. Adv. Mech. Eng. 10, 1–11 (2010)

    Google Scholar 

  • Yu, W., Xie, H.: A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 2012, 435873 (2012)

    Google Scholar 

  • Zhang, F., Yeh, G-T., Parker, J.C. (ed.): Groundwater Reactive Transport Models. Bentham Science Publishers, Chennai (2012). http://ebooks.benthamscience.com/book/9781608053063/

Download references

Acknowledgements

This work was supported by the “Scientific and Academic Personnel of Innovative Russia” Federal Target Program for 2009–2013, State Contract P1109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Sandakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, R.V., Gordeev, U.N. & Sandakov, E.B. On the Flow Conditions at the Fluid: Permeable Surface Interface. Transp Porous Med 118, 271–280 (2017). https://doi.org/10.1007/s11242-017-0857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0857-5

Keywords

Navigation