Skip to main content
Log in

The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

There is growing interest in using advanced imaging techniques to describe the complex pore-space of natural rocks at resolutions that allow for quantitative assessment of the flow and transport behaviors in these complex media. Here, we focus on representations of the complex pore-space obtained from X-ray microtomography and the subsequent use of such ‘pore-scale’ representations to characterize the overall porosity and permeability of the rock sample. Specifically, we analyze the impact of sub-resolution porosity on the macroscopic (Darcy scale) flow properties of the rock. The pore structure of a rock sample is obtained using high-resolution X-ray microtomography \((3.16^3\,{\upmu } \hbox {m}^{3}/\hbox {voxel})\). Image analysis of the Berea sandstone sample indicates that about 2 % of the connected porosity lies below the resolution of the instrument. We employ a Darcy–Brinkman approach, in which a Darcy model is used for the sub-resolution porosity, and the Stokes equation is used to describe the flow in the fully resolved pore-space. We compare the Darcy–Brinkman numerical simulations with core flooding experiments, and we show that proper interpretation of the sub-resolution porosity can be essential in characterizing the overall permeability of natural porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013). Benchmark problems, datasets and methodologies for the computational geosciences

    Article  Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013). Benchmark problems, datasets and methodologies for the computational geosciences

    Article  Google Scholar 

  • Apourvari, S.N., Arns, C.H.: An assessment of the influence of micro-porosity for effective permeability using local flux analysis on tomographic images. International Petroleum Technology Conference, Doha, Qatar, 19–22 January 2014

  • Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Bakke, S., Berge, L.I., Oeren, P.-E., Knackstedt, M.A.: Pore-scale characterization of carbonates using X-ray microtomography. SPE J. 10(4), 475–484 (2005)

    Article  Google Scholar 

  • Auriault, J.-L.: On the domain of validity of brinkman’s equation. Transp. Porous Media 79(2), 215–223 (2009)

    Article  Google Scholar 

  • Bauer, D., Youssef, S., Han, M., Bekri, S., Rosenberg, E., Fleury, M., Vizika, O.: From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties. Phys. Rev. E 84(1), 011133 (2011)

    Article  Google Scholar 

  • Bekri, S., Laroche, C., Vizika, O.: Pore network models to calculate transport and electrical properties of single or dual-porosity rocks. In: International symposium of the society of core analysts, Toronto (2005)

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    Google Scholar 

  • Bultreys, T., Van Hoorebeke, L., Cnudde, V.: Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Adv. Water Resour. 78, 36–49 (2015)

    Article  Google Scholar 

  • Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrol. J. 6(1), 178–190 (1998)

    Google Scholar 

  • Churcher, P.L., French, P.R., Shaw, J.C., Schramm, L.L., et al.: Rock properties of Berea sandstone, baker dolomite, and Indiana limestone. In: SPE, vol. 21044, pp. 20–22 (1991)

  • Datta, S.S., Chiang, H., Ramakrishnan, T.S., Weitz, D.A.: Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Phys. Rev. Lett. 111, 064501 (2013)

    Article  Google Scholar 

  • De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  • Garing, C., Luquot, L., Pezard, P.A., Gouze, P.: Electrical and flow properties of highly heterogeneous carbonate rocks. AAPG Bull. 98(1), 49–66 (2014)

    Article  Google Scholar 

  • Gjetvaj, F., Russian, A., Gouze, P., Dentz, M.: Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in berea sandstone. Water Resour. Res. 51, 8273–8293 (2015)

    Article  Google Scholar 

  • Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. 44, 1–19 (2008)

    Google Scholar 

  • Guibert, R., Horgue, P., Debenest, G., Quintard, M.: A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry. Math. Geosci. 48(3), 329–347 (2015)

    Article  Google Scholar 

  • Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P., Debenest, G.: Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities. Transp. Porous Media 107, 641–656 (2015)

    Article  Google Scholar 

  • Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995)

    Article  Google Scholar 

  • Hebert, V., Garing, C., Linda, L., Pezard, P.A., Gouze, P.: Multi-scale X-ray tomography analysis of carbonate porosity. Geol. Soc. Lond. Spec. Publ. 406(1), 61–79 (2015)

    Article  Google Scholar 

  • Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B 14(8), 3438 (1976)

    Article  Google Scholar 

  • Ioannidis, M.A., Chatzis, I.: A dual-network model of pore structure for vuggy carbonates. In: SCA2000-09, International Symposium of the Society of Core Analysts, Abu Dhabi, UAE (2000)

  • Jiang, Z., Dijke, M.I.J., Sorbie, K.S., Couples, G.D.: Representation of multiscale heterogeneity via multiscale pore networks. Water Resour. Res. 49(9), 5437–5449 (2013)

    Article  Google Scholar 

  • Kainourgiakis, M.E., Kikkinides, E.S., Galani, A., Charalambopoulou, G.C., Stubos, A.K.: Digitally reconstructed porous media: transport and sorption properties. In: Das, D.B., Hassanizadeh, S.M. (eds.) Upscaling Multiphase Flow in Porous Media, pp. 43–62. Springer, Netherlands (2005)

    Chapter  Google Scholar 

  • Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K.: 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver. J. Soils Sediments 12(1), 86–96 (2011)

    Article  Google Scholar 

  • Knackstedt, M., Sheppard, A., Nguyen, V., Arns, C., Sok, R., et al.: 3d imaging and characterization of the pore space of carbonate core; implications to single and two phase flow properties. In: SPWLA 47th Annual logging symposium. Society of Petrophysicists and Well-Log Analysts (2006)

  • Krotkiewski, M., Ligaarden, I.S., Lie, K.-A., Schmid, D.W.: On the importance of the Stokes-Brinkman equations for computing effective permeability in karst reservoirs. Commun. Comput. Phys. 10, 1315–1332 (2011)

    Google Scholar 

  • Mehmani, A., Prodanović, M.: The effect of microporosity on transport properties in porous media. Adv. Water Resour. 63, 104–119 (2014)

    Article  Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45, 103–125 (2013)

    Article  Google Scholar 

  • Neale, G., Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52(4), 475–478 (1974)

    Article  Google Scholar 

  • Noiriel, C., Bernard, D., Gouze, P., Thibault, X.: Hydraulic properties and microgeometry evolution accompanying limestone dissolution by acidic water. Oil Gas Sci. Technol. 60(1), 177–192 (2005)

    Article  Google Scholar 

  • Paganin, D., David, P., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206(1), 33–40 (2002)

    Article  Google Scholar 

  • Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Washington DC (1980)

  • Prodanović, M., Mehmani, A., Sheppard, A.P.: Imaged-based multiscale network modelling of microporosity in carbonates. Geol. Soc. Lond. Spec. Publ. 406(1), 95–113 (2015)

    Article  Google Scholar 

  • Sanchez, S., Ahlberg, P.E., Trinajstic, K.M., Mirone, A., Tafforeau, P.: Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc. Microanal. 18(05), 1095–1105 (2012)

    Article  Google Scholar 

  • Scheibe, T.D., Perkins, W.A., Richmond, M.C., McKinley, M.I., Romero-Gomez, P.D.J., Oostrom, M., Wietsma, T.W., Serkowski, J.A., Zachara, J.M.: Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resour. Res. 51(2), 1023–1035 (2015)

    Article  Google Scholar 

  • Shabro, V., Torres-Verdín, C., Javadpour, F.: Numerical simulation of shale-gas production: from pore-scale modeling of slip-flow, knudsen diffusion, and langmuir desorption to reservoir modeling of compressible fluid. In: North American Unconventional Gas Conference and Exhibition (2011)

  • Slattery, J.C.: Single-phase flow through porous media. AIChE J. 15(6), 866–872 (1969)

    Article  Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Article  Google Scholar 

  • Tam, C.K.W.: The drag on a cloud of spherical particles in low reynolds number flow. J. Fluid Mech. 38(03), 537–546 (1969)

    Article  Google Scholar 

  • Tanino, Y., Blunt, M.J.: Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour. Res. 48, 1–13 (2012)

    Article  Google Scholar 

  • Thovert, J.-F., Adler, P.M.: Grain reconstruction of porous media: application to a bentheim sandstone. Phys. Rev. E 83(5), 056116 (2011)

    Article  Google Scholar 

  • Trebotich, D., Graves, D.T.: An adaptive finite volume method for the incompressible Navier-Stokes equations in complex geometries. Commun. Appl. Math. Comput. Sci. 10, 43–82 (2015)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986). doi:10.1007/BF01036523

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). 35th Year Anniversary Issue

    Article  Google Scholar 

  • Youssef, S., Bauer, D., Han, M., Bekri, S., Rosenberg, E., Fleury, M., Vizika-kavvadias, O.: Pore-network models combined to high resolution micro-ct to assess petrophysical properties of homogenous and heterogenous rocks. In: International Petroleum Technology Conference. (2008)

  • Zhan, X., Schwartz, L., Smith, W., Toksäz, N., Morgan, D.: Pore scale modeling of rock properties and comparison to laboratory measurements. In: SEG Houston 2009 international exposition and annual meeting. Society of Exploration Geophysicists (2009)

Download references

Acknowledgments

We wish to acknowledge TOTAL STEMS project and the Office of Basic Energy Sciences Energy Frontier Research Center under Contract Number DE-AC02-05CH11231 for financial support. We thank the Stanford Center for Computational Earth & Environmental Sciences for computational support. We also thank Paul Tafforeau for his help with the X-ray microtomography data acquisition at the European Synchrotron Radiation Facility (ESRF, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyprien Soulaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soulaine, C., Gjetvaj, F., Garing, C. et al. The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability. Transp Porous Med 113, 227–243 (2016). https://doi.org/10.1007/s11242-016-0690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0690-2

Keywords

Navigation