Skip to main content
Log in

Pore-to-Core-Scale Network Modelling of \(\mathbf{CO}_{\mathbf{2}}\) Migration in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pore network modelling offers a versatile and efficient means for examining the complex interplay of a variety of microscopic processes affecting subsurface migration of \(\hbox {CO}_{2}\) injected for storage. We present a dynamic pore-to-core network model capable of simulating the full range of \(\hbox {CO}_{2}\) migration processes under the influence of capillary and gravity forces, including \(\hbox {CO}_{2}\) dissolution in brine. A parametric sensitivity study investigating four variables that define the microscopic Bond number, viz: mean pore radius, \(\hbox {CO}_{2}\)–brine interfacial tension, brine–\(\hbox {CO}_{2}\) density difference, and network height, was performed. Two broad classes of behaviours were identified—one quasi-stable and the other unstable (migratory)—and critical gas saturation \(({S}_\mathrm{gc})\) was found to change in a non-monotonic way with transition from quasi-stable to migratory regime. The model predicts strong effects of gravity at the scale typical of continuum-type simulator gridblocks, and pore size distribution variance and pore connectivity were found to have a major impact on \({S}_\mathrm{gc}\) which cannot be predicted a priori through the use of Bond number scaling. For temperatures and pressures above the \(\hbox {CO}_{2}\) critical point, \(\hbox {CO}_{2}\) and \(\hbox {CH}_{4}\) flow regimes in brine displayed generally similar characteristics, suggesting that flow coefficients (e.g. relative permeability) of \(\hbox {CH}_{4}\) and \(\hbox {CO}_{2}\) in brine could be used interchangeably in continuum-type simulators with effectively the same results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  • Bachu, S., Bennion, B.: Effects of In-Situ Conditions on Relative Permeability Characteristics of CO2-Brine Systems. Springer, Berlin (2007)

    Google Scholar 

  • Bachu, S., Bennion, D.B.: Tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) \(^{\circ }{\rm C}\). J. Chem. Eng. Data 54, 765–775 (2009)

  • Birovljev, A., Wagner, G., Meakin, P., Feder, J., Jossang, T.: Migration and fragmentation of invasion percolation clusters in two-dimensional porous media. Phys. Rev. E 51(6), 5911–5915 (1995)

    Article  Google Scholar 

  • Blunt, M.J.: Physical-based network modeling of multiphase flow in intermediate-wet porous media. J. Pet. Sci. Eng. 20, 117–125 (1998)

    Article  Google Scholar 

  • Blunt, M.J., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 1995(52), 6387–6403 (1995). doi:10.1103/PhysRevE.52.6387

    Article  Google Scholar 

  • Bondino, I., McDougall, S.R., Hamon, G: Pore network modelling of heavy oil depressurisation: a parametric study of factors affecting critical gas saturation and 3-phase relative permeabilities. SPE J. (2005)

  • Bromhal, G.S., Sams, W.N., Jikich, S., Ertekin, T., Smith, D.H.: Simulation of \({\rm CO}_{\rm 2}\) sequestration in coal beds: the effects of sorption isotherms. Chem. Geol. 217(3–4), 201–211 (2005)

  • Cinar, Y., Riaz, A., Tchelep, H.A.: Experimental study of \({\rm CO}_{\rm 2}\) injection into saline formations. SPE J. 14–4, 588–594 (2009)

  • Duan, Z., Sun, R., Zhu, C., Chou, I.M.: An improved model for the calculation of \({\rm CO}_{\rm 2}\). Mar. Chem. 98, 131–139 (2006)

  • Dumoré, J.M.: Development of gas-saturation during solution-gas drive in an oil layer below a gas cap. SPE J. 10(03), 211–218 (1970)

    Article  Google Scholar 

  • El-Maghraby, R.M., Blunt, M.J.: Residual \({\rm CO}_{\rm 2}\) trapping in indiana limestone. Environ. Sci. Technol. 47(1), 227–233 (2013)

  • El-Maghraby, R.M., Pentland, C.H., Blunt, M.J.: Coreflood measurements of \({\rm CO}_{\rm 2}\) trapping. In: Presented at the SPE Annual Technical Conference and Exhibition. Denvar, Colorado, SPE 147373, (2011)

  • Espinoza, D.N., Santamarina, J.C.: Water- \({\rm CO}_{\rm 2}\) geological storage. Water Resourc. Res. 46, W07537 (2010)

  • Ezeuko, C.C., McDougall, S.R., Bondino, I., Hamon, G.: Dynamic pore-network simulator for modeling buoyancy-driven migration during depressurization of oil-saturated systems. SPE J. 15, 906–916 (2010)

    Article  Google Scholar 

  • Ferer, M., Bromhal, G. S., Smith D. H.: Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields, http://www.researchgate.net/, (2001)

  • Geistlinger, H., Krauss, G., Lazik, D., Luckner, L.: Direct gas injection into saturated glass beads: transition from incoherent to coherent gas flow pattern. Water Resour. Res. 42(W07403), 1–12 (2006). doi:10.29/2005WR004450

    Google Scholar 

  • Geistlinger, H., Mohammadian, S.: Capillary trapping mechanism in strongly water wet systems: comparison between experiment and percolation theory. Adv. Water Resour. 79, 35–50 (2015)

    Article  Google Scholar 

  • Herring, A.L., Harper, E.J., Andersson, L., Sheppard, A., Bay, B.K., Wildenschild, D.: Effect of fluid topology on residual nonwetting phase trapping: implications for geologic \({\rm CO}_{\rm 2}\) sequestration. Adv. Water Resour. 62(0), 47–58 (2013)

  • Hough, E.W., Rzasa, M.J., Wood, B.B.: Interfacial tensions at reservoir pressures and temperatures; apparatus and the water-methane system. Pet. Trans. AIME 192, (1951)

  • Jennings, J.R., Harley, Y., Newman, G.H.: The effect of temperature and pressure on the interfacial tension of water against methane-normal decane mixtures. SPE J. 11, 171–175 (1971). SPE 3071

    Article  Google Scholar 

  • Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological \({\rm CO}_{\rm 2}\) storage. Water Resour. Res. 42, W12418 (2006). doi:10.1029/2001WR004806

  • Kovscek, A.R., Cakici, M.D.: Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery. Energy Convers. Manag. 46, 1941–1956 (2005)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C.: Role of roughness and edges during imbibition in square capillaries. In: Proceeding, Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, SPE 13264, (1984)

  • Lenormand, R., Toubol, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165 (1988)

    Article  Google Scholar 

  • Li, X., Boek, E., Maitland, G.C., Trusler, J.P.M.: Interfacial tension of (\({\rm Brines}+ {\rm CO}_{\rm 2})\). J. Chem. Eng. Data 57, 1078–1088 (2012)

  • Lohne, A., Virnovsky, G., Durlofsky, L.J.: Two-stage upscaling of two-phase flow: from core to simulation scale. In: Presented at the SPE/DOE Symposium on Improved Oil Recovery. Tulsa, Oklahoma, SPE 89422, (2004)

  • McDougall, S.R., Mackay, E.J.: The impact of pressure-dependent interfacial tension and buoyancy forces upon pressure depletion in virgin hydrocarbon reservoirs. Trans. Chem. Eng. 76 part A, 553–561 (1998)

    Article  Google Scholar 

  • McDougall, S.R., Sorbie, K.S.: The application of network modeling techniques to multiphase flow in porous media. Pet. Geosci. 3, 161–169 (1997)

    Article  Google Scholar 

  • McDougall, S.R., Sorbie, K.S.: The impact of wettability on waterflooding—pore-scale simulation. SPE Reserv. Eng. 10, 208–213 (1995)

    Article  Google Scholar 

  • Méheust, Y., Løvoll, G., Måløy, K.J., Schmittbuhl, J.: Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects. Phy. Rev. E 66(5), 051603 (2002). doi:10.1103/PhysRevE.66.051603

    Article  Google Scholar 

  • Mumford, K.G., Dickson, S.E., Smith, J.E.: Slow gas expansion in saturated natural porous media by gas injection and partitioning with non-aqueous phase liquids. Adv. Water Resour. 32, 29–40 (2009)

    Article  Google Scholar 

  • Naveed, M., Hamamoto, S., Kawamoto, K., Sakaki, T., Takahashi, M., Komatsu, T., Moldrup, P., Lamande’, M., Wildenschild, D., Prodanovi, M., de Jonge, L.W.: Correlating gas transport parameters and X-Ray computed tomography measurements in porous media. Soil Sci. 178, 2 (2013)

    Article  Google Scholar 

  • Nielsen, L.C., Bourg, I.C., Sposito, G.: Predicting \({\rm CO}_{\rm 2}\) storage. Geochim. Cosmochim. Acta 81, 28–38 (2011)

  • Orr Jr, F.M.: Storage of carbon dioxide in geologic formations. J. Pet. Technol. 56(9), 90–97 (2004)

    Article  Google Scholar 

  • Ozah, R.C., Lakshminarasimhan, S., Pope, G.A., Sepehrnoori, K., Bryant, S.L.: Numerical simulation of the storage of pure \({\rm CO}_{\rm 2}\)S gas mixtures in deep saline aquifers. In: Presented at the SPE Annual Technical Conference and Exhibition. Tulsa, Oklahoma, SPE 99938, (2006)

  • Pentland, C. H., Iglauer, S., Gharbi, O., Okada, K., Suekane, T.: The influence of pore space geometry on the entrapment of carbon dioxide by capillary forces. In: Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, SPE-158516-MS, (2012)

  • Peters, E.J., Flock, D.L.: The onset of instability during two-phase immiscible displacement in porous media. SPE J. 21, 249–258 (1981)

    Article  Google Scholar 

  • Rustad, A.B., Theting, T.G., Held, R.J.: Pore scale estimation, up scaling and uncertainty modeling for multiphase properties. In: Presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, SPE-113005-MS, (2008)

  • Saadatpoor, E., Bryant, S.L., Sepehrnoori, K.: Effect of heterogeneous capillary pressure on bouyancy-driven \({\rm CO}_{\rm 2}\) migration. In: Proceedings of the SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma, SPE 113984, (2008)

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. WILEY-VCHVerlag GmbH & Co., KGaA, Weinheim: VHC (2011)

    Book  Google Scholar 

  • Schroth, M.H., Ahearn, S.J., Selker, J.S., Istok, J.D.: Characterization of Miller–Similar silica sands for laboratory hydrologic studies. Soil Sci. Soc. Am. J. 60, 1331–1339 (1996)

    Article  Google Scholar 

  • Selker, J.S., Niemet, M., McDuffie, N.G., Gorelick, S.M., Parlange J.: The local geometry of gas injection into saturated homogeneous porous media. Trans. Porous Media. doi:10.1007/s11242-006-0005-0 (2006)

  • Shariat, A., Moore, R.G., Mehta, S.A., Van Fraassen, K.C., Rushing, J.A.: Gas/Water IFT measurements using the pendant drop method at HP/HT conditions: The Selected Plane versus Computerized Image Processing Methods. SPE 159394, (2012)

  • Stohr, M., Khalili, A.: Dynamic regimes of bouyancy-affected two-phase flow in unconsolidated porous media. Phys. Rev. E 73, 036301 (2006)

    Article  Google Scholar 

  • Varnon, J.E., Greenkorn, R.A.: Unstable two-fluid flow in a porous medium. In: Presented at the 43th Annual Fall Meeting of Society of Petroleum Engineers. Houston, Texas, SPE 2182, (1969)

Download references

Acknowledgments

The authors wish to thank Foundation CMG and Scottish Carbon Capture & Storage for providing funds for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bagudu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagudu, U., McDougall, S.R. & Mackay, E.J. Pore-to-Core-Scale Network Modelling of \(\mathbf{CO}_{\mathbf{2}}\) Migration in Porous Media. Transp Porous Med 110, 41–79 (2015). https://doi.org/10.1007/s11242-015-0556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0556-z

Keywords

Navigation