Skip to main content
Log in

Finite Element Model of Soil Water and Nutrient Transport with Root Uptake: Explicit Geometry and Unstructured Adaptive Meshing

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, we consider a model of soil water and nutrient transport with plant root uptake. The geometry of the plant root system is explicitly taken into account in the soil model. We first describe our modeling approach. Then, we introduce an adaptive mesh refinement procedure enabling us to accurately capture the geometry of the root system and small-scale phenomena in the rhizosphere. Finally, we present a domain decomposition technique for solving the problems arising from the soil model as well as some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barber, S.A.: Soil Nutrient Bioavailability: a Mechanistic Approach. Wiley-Interscience, New York (1984)

    Google Scholar 

  • Barraclough, P.B., Tinker, P.B.: The determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk density. J. Soil Sci. 32(2), 225–236 (1981)

    Article  Google Scholar 

  • Berninger, H.: Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the richards equation. Ph.D. thesis, Freie Universität Berlin (2007)

  • Celia, M.A., Bouloutas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)

    Article  Google Scholar 

  • Dobrzynski, C.: MMG3D: user guide. Rapport Technique RT-0422, INRIA (2012)

  • Doussan, C., Pagès, L., Vercambre, G.: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption-model description. Ann. Bot. 81, 213–223 (1998)

    Article  Google Scholar 

  • Doussan, C., Pierret, A., Garrigues, E., Pagès, L.: Water uptake by plant roots: II-modelling of water transfer in the soil–root-system with explicit account of flow within the root system—comparison with experiments. Plant Soil 283(1–2), 99–117 (2006)

    Article  Google Scholar 

  • Fiscus, E.L.: The interaction between osmotic- and pressure-induced water flow in plant roots. Plant Physiol. 55(5), 917–922 (1975)

    Article  Google Scholar 

  • Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–266 (2013)

    Google Scholar 

  • Hopmans, J.W., Bristow, K.L.: Current capabilities and future needs of root water and nutrient uptake modeling. In: Sparks, D.L. (ed.) Advances in Agronomy, vol. 77, pp. 103–183. Academic, London (2002)

    Google Scholar 

  • Javaux, M., Schröder, T., Vanderborght, J., Vereecken, H.: Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7, 1079–1088 (2008)

    Article  Google Scholar 

  • Ji, S.H., Park, Y.J., Sudicky, E.A., Sykes, J.F.: A generalized transformation approach for simulating steady-state variably-saturated subsurface flow. Adv. Water Resour. 31(2), 313–323 (2008)

    Article  Google Scholar 

  • Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance domain decomposition methods on massively parallel architectures with freefem++. J. Numer. Math. 20, 287–302 (2013)

    Google Scholar 

  • Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Scient. Comput. 20, 359–392 (1998)

    Article  Google Scholar 

  • Kochian, L.V., Lucas, W.J.: Potassium transport in corn roots: I. Resolution of kinetics into a saturable and linear component. Plant Physiol. 70(6), 1723–1731 (1982)

    Article  Google Scholar 

  • Kool, J.B., Parker, J.C.: Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23(1), 105–114 (1987)

    Article  Google Scholar 

  • Landsberg, J., Fowkes, N.: Water movement through plant roots. Ann. Bot. 42(1), 493–508 (1978)

    Article  Google Scholar 

  • Leitner, D., Klepsch, S., Bodner, G., Schnepf, A.: A dynamic root system growth model based on l-systems. Plant Soil 332(1–2), 177–192 (2010)

    Article  Google Scholar 

  • McGechan, M., Lewis, D.: Sorption of phosphorus by soil, part 1: principles, equations and models. Biosyst. Eng. 82, 1–24 (2002)

    Article  Google Scholar 

  • Pop, I.S.: Error estimates for a time discretization method for the richards’ equation. Computation. Geosci. 6(2), 141–160 (2002)

    Article  Google Scholar 

  • Saaltink, M.W., Carrera, J., Olivella, S.: Mass balance errors when solving the convective form of the transport equation in transient flow problems. Water Resour. Res. 40(5), W05107 (2004)

  • Šimůnek, J., Hopmans, J.W.: Modeling compensated root water and nutrient uptake. Ecol. Modell. 220(4), 505–521 (2009)

    Article  Google Scholar 

  • Somma, F., Hopmans, J., Clausnitzer, V.: Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202(2), 281–293 (1998)

    Article  Google Scholar 

  • Stevens, D., Power, H.: A scalable and implicit meshless RBF method for the 3D unsteady nonlinear richards equation with single and multi-zone domains. Int. J. Numer. Methods Eng. 85(2), 135–163 (2011)

    Article  Google Scholar 

  • Tuzet, A., Perrier, A., Leuning, R.: A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26(7), 1097–1116 (2003)

    Article  Google Scholar 

  • Varado, N., Braud, I., Ross, P., Haverkamp, R.: Assessment of an efficient numerical solution of the 1D richards’ equation on bare soil. J. Hydrol. 323(1–4), 244–257 (2006)

    Article  Google Scholar 

  • Vohralík, M., Wheeler, M.: A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows. Computation. Geosci. 17(5), 789–812 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Pierre Jolivet for his valuable insights on FreeFem++ and domain decomposition methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Tournier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tournier, PH., Hecht, F. & Comte, M. Finite Element Model of Soil Water and Nutrient Transport with Root Uptake: Explicit Geometry and Unstructured Adaptive Meshing. Transp Porous Med 106, 487–504 (2015). https://doi.org/10.1007/s11242-014-0411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0411-7

Keywords

Navigation