Skip to main content

Advertisement

Log in

Geochemical Barriers in \(\hbox {CO}_{2}\) Capture and Storage Feasibility Studies

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

\(\hbox {CO}_{2}\) sequestration in geological formations requires specific conditions to safely store this greenhouse gas underground. Different geological reservoirs can be used for this purpose, although saline aquifers are one of the most promising targets due to both their worldwide availability and storing capacity. Nevertheless, geochemical processes and fluid flow properties are to be assessed pre-, during, and post-injection of \(\hbox {CO}_{2}\). Theoretical calculations carried out by numerical geochemical modeling play an important role to understand the fate of \(\hbox {CO}_{2}\) and to investigate short-to-long-term consequences of \(\hbox {CO}_{2}\) storage into deep saline reservoirs. In this paper, the injection of \(\hbox {CO}_{2}\) in a deep structure located offshore in the Tyrrhenian Sea (central Italy) was simulated. The results of a methodological approach for evaluating the impact that \(\hbox {CO}_{2}\) has in a saline aquifer hosted in Mesozoic limestone formations were discussed. Seismic reflection data were used to develop a reliable 3D geological model, while 3D simulations of reactive transport were performed via the TOUGHREACT code. The simulation model covered an area of \(>\)100 km\(^{2}\) and a vertical cross-section of \(>\)3 km, including the trapping structure. Two simulations, at different scales, were carried out to depict the local complex geological system and to assess: (i) the geochemical evolution at the reservoir–caprock interface over a short time interval, (ii) the permeability variations close to the \(\hbox {CO}_{2}\) plume front, and (iii) the \(\hbox {CO}_{2}\) path from the injection well throughout the geological structure. One of the most important results achieved in this study was the formation of a geochemical barrier as \(\hbox {CO}_{2}\)-rich acidic waters flowed into the limestone reservoir. As a consequence, a complex precipitation/dissolution zone formed, which likely plays a significant role in the sequestration of \(\hbox {CO}_{2}\) due to either the reduction of the available storage volume and/or the enhancement of the required injection pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agosta, F., Prasad, M., Aydin, A.: Physical properties of carbonate fault rocks, fucino basin (Central Italy): implications for fault seal in platform carbonates. Geofluids 7, 19–32 (2007)

    Article  Google Scholar 

  • Allen, D.E., Strazisar, B.R., Soong, Y., Hedges, S.W.: Modeling carbon dioxide sequestration in saline aquifers: significance of elevated pressures and salinities. Fuel Process. Technol. 86(14–15), 1569–1580 (2005)

    Article  Google Scholar 

  • André, L., Audigane, P., Azaroual, M., Menjoz, A.: Numerical modeling of fluid: rock chemical interactions at the supercritical \(\text{ CO }_{2}\)–liquid interface during \(\text{ CO }_{2}\) injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers. Manag. 48, 1782–1797 (2007)

    Article  Google Scholar 

  • Audigane, P., Gaus, I., Czernichowski-Lauriol, I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of \(\text{ CO }_{2}\) injection in a saline aquifer at the Sleipner site, North Sea. Am. J. Sci. 307, 974–1008 (2007)

    Article  Google Scholar 

  • Audigane, P., Oldenburg, C.M., van der Meer, B., Geel, K., Lions , J., Gaus, I., RobelinCh, I., Durst, P., Xu, T.: Geochemical modeling of the CO\(_2\) injection into a methane gas reservoir at the K12-B Field, NorthSea. In: Grobe, M., Pashin, J. C., Dodge, R. L. (eds.), Carbon dioxide Sequestration in Geological Media-State of the Science. AAPGStudies, pp. 1–20. (2008)

  • Bachu, S., Adams, J.J.: Sequestration of \(\text{ CO }_{2}\) in geological media in response to climate change: capacity of deep saline aquifers to sequester \(\text{ CO }_{2}\) in solution. Energy Convers. Manag. 44(20), 3151–3175 (2003)

    Article  Google Scholar 

  • Baker, J.C., Bai, G.P., Hamilton, P.J., Golding, S.D., Keene, J.B.: Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen–Gunnedah–Sydney Basin system Eastern, Australia. J. Sediment Res. A 65(3), 522–530 (1995)

    Google Scholar 

  • Balashov, V.N., Guthrie, G.D., Hakala, J.A., Lopano, C.L., Rimstidt, J.D., Brantley, S.L.: Predictive modeling of \(\text{ CO }_{2}\) sequestration in deep saline sandstone reservoirs: impacts of geochemical kinetics. Appl. Geochem. 30, 41–56 (2013)

    Article  Google Scholar 

  • Bartole, R.: Tectonic structures of the Latian–Campanian shelf [Tyrrhenian sea]. Boll. Ocean. Teor. Appl. 2, 197–230 (1984)

    Google Scholar 

  • Bartole, R.: Caratteri sismostratigrafici, strutturali e paleogeografici della piattaforma continentale tosco-laziale; suoi rapporti con l’Appennino settentrionale. Boll. Soc. Geol. Ital. 109, 599–622 (1990)

    Google Scholar 

  • Bartole, R.: The North Tyrrhenian–Northern Apennines postcollisional system: constraints for geodynamic model. Terra Nova 7, 7–30 (1995)

    Article  Google Scholar 

  • Berner, R.A., Holdren, G.R.: Mechanism of feldspar weathering. II: Observations of feldspars from soils. Geochim. Cosmochim. Acta. 43, 1173–1186 (1979)

    Article  Google Scholar 

  • Berner, R.A., Schott, J.: Mechanism of pyroxene and amphibole weathering. II. Observations of soil grains. Am. J. Sci. 282, 1214–1231 (1982)

    Article  Google Scholar 

  • Bénézeth, P., Palmer, D.A., Anovitz, L.M., Horita, J.: Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of \(\text{ CO }_{2}\). Geochim. Cosmochim. Acta. 71, 4438–4455 (2007)

    Article  Google Scholar 

  • Black, J.R., Haese, R.R.: Chlorite dissolution rates under \(\text{ CO }_{2}\) saturated conditions from 50 to \(120\,^{\circ }\text{ C }\) and 120 to 200 bar \(\text{ CO }_{2}\). Geochim. Cosmochim. Acta 125, 225–240 (2014)

    Article  Google Scholar 

  • Bumb, P., Quattrocchi, F., Desideri, U., Arcioni, L.: Cost optimized \(\text{ CO }_{2}\) pipeline transportation grid: a case study from Italian industries. World Acad. Sci. Eng. Technol. 58, 138–145 (2009)

    Google Scholar 

  • Buttinelli, M., Procesi, M., Cantucci, B., Quattrocchi, F., Boschi, E.: The geo-database of caprock quality and deep saline aquifers distribution for geological storage of \(\text{ CO }_{2}\) in Italy. Energy 36(5), 1–16 (2011)

    Article  Google Scholar 

  • Buttinelli, M., Scrocca, D., De Rita, D., Quattrocchi, F.: Modes of stepwise eastward migration of the Northern Tyrrhenian Sea back-arc extension: evidences from the Northern Latium offshore (Italy). Tectonics 33, 187–206 (2014)

    Article  Google Scholar 

  • Cantucci, B., Montegrossi, G., Vaselli, O., Tassi, F., Quattrocchi, F., Perkins, E.H.: Geochemical modeling of \(\text{ CO }_{2}\) storage in deep reservoirs; the Weyburn Project (Canada). Chem. Geol. 265, 181–197 (2009)

    Article  Google Scholar 

  • Carminati, E., Doglioni, C., Scrocca, D.: Alps versus Apennines. In: Special Volume of the Italian Geological Society for the \(32^{\circ }\) International Geological Congress, Florence, pp. 141–151 (2004).

  • Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C.: Geothermal ranking of Italian territory. Geothermics 1995(24), 115–129 (1995)

    Article  Google Scholar 

  • Chiarabba, C., Jovane, L., Di Stefano, R.: A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 395, 251–268 (2005)

    Article  Google Scholar 

  • Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L.: Rate of diffuse carbon dioxide earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105, 8423–8434 (2000)

    Article  Google Scholar 

  • Chiodini, G., Frondini, F., Ponziani, F.: Deep structures and carbon dioxide degassing in central Italy. Geothermics 24(1), 81–94 (1995)

    Article  Google Scholar 

  • Clauser, C.: Geothermal energy, In: K. Heinloth (ed.), Landolt-Börnstein, Group VIII: Advanced Materials and Technologies, Vol. 3 Energy Technologies, Subvol. C: Renewable Energies, pp. 480–595, Springer, Heidelberg-Berlin (2006)

  • Clauser, C., Huenges, E.: Thermal Conductivity of Rocks and Minerals, Chapter 3 of A Handbook of Physical Constants. AGU Ref. Shelf 3 (1995)

  • Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19, 38 (1954)

    Google Scholar 

  • Damen, K., Martijn, V.T., Faaij, A., Turkenburg, W.: A comparison of electricity and hydrogen production systems with \(\text{ CO }_{2}\) capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. 32, 215–246 (2006)

    Article  Google Scholar 

  • Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W., Knott, S.D.: Kinematics of the western Mediterranean. In: Coward, M.P., Dietrich, D., Park, R.G. (eds.) Alpinetectonics, pp. 265–283. Geological Society of London, London (1989)

    Google Scholar 

  • Donda, F., Volpi, V., Persoglia, S., Parushev, D.: \(\text{ CO }_{2}\) storage potential of deep saline aquifers: the case of Italy. Int. J. Greenh. Gas Control 5, 327–335 (2011)

    Article  Google Scholar 

  • Duncan, I.: Carbon sequestration risks, opportunities and learning from the \(\text{ CO }_{2}\)-EOR industry. Texas: University of Austin. US House Committee on Energy and Commerce, Sub-comm on Energy and the Environment (2009)

  • Ennis-King, J., Paterson, L.: Rate of dissolution due to convective mixing in the underground storage of carbon dioxide. In: Gale, J., Kaya, Y. (eds.) 6th International Conference on Greenhouse Gas Control Technologies, pp. 507–510. Pergamon (2003)

  • Fazzini, P., Gelmini, R., Mantovani, M.P., Pellegrini, M.: Geologia dei Monti della Tolfa (Lazio Settentrionale, provincie di Viterbo e Roma). Memorie della Società Geologica Italiana 11, 65–144 (1972)

    Google Scholar 

  • Frank, M.J.W., Kuipers, J.A.M., Van Swaaij, W.P.M.: Diffusion coefficients and viscosities of \(\text{ CO }_{2}+\text{ H }_{2}\text{ O }\), \(\text{ CO }_{2}+\text{ CH }_{3}\text{ OH }, \text{ NH }_{3}+\text{ H }_{2}\text{ O }\), and \(\text{ NH }_{3}+\text{ CH }_{3}\text{ OH }\) liquid mixtures. J. Chem. Eng. Data 41, 297–302 (1996)

    Article  Google Scholar 

  • Fritz, B.: Multicomponent solid solution for clay minerals and computer modeling of weathering processes. Chem. Weather. Nato ASI Ser. 149, 9–34 (1985)

    Google Scholar 

  • Garcia, J.E.: Density of aqueous solutions of \(\text{ CO }_{2}\). Lawrence Berkeley National Laboratory Paper LBNL-49023. University of California (2001)

  • Gao, Y., Liu, L., Hu, W.: Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China. Appl. Geochem. 24(9), 1724–1738 (2009)

    Article  Google Scholar 

  • Gaus, I., Audigane, P., Andre, L., Lions, J., Jacquemet, N., Dutst, P., Czernichowski- Lauriol, I., Azaroual, M.: Geochemical and solute transport modelling for \(\text{ CO }_{2}\) storage, what to expect from it? Int. J. Greenh. Gas Control 2(4), 605–625 (2008)

    Article  Google Scholar 

  • Gaus, I., Azaroual, M., Czernichowski-Lauriol, I.: Reactive transport modelling of the impact of \(\text{ CO }_{2}\) injection on the clayey cap rock at Sleipner (North Sea). Chem. Geol. 217, 319–337 (2005)

    Article  Google Scholar 

  • Gautier, J.M., Oelkers, E.H., Schott, J.: Are quartz dissolution rates proportional to B.E.T. surface areas? Geochim. Cosmochim. Acta 65, 1059–1070 (2001)

    Article  Google Scholar 

  • Golab, A.N., Carr, P.F., Palamara, D.R.: Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. Int. J. Coal Geol. 66, 296–304 (2006)

    Article  Google Scholar 

  • Golab, A.N., Hutton, A.C., French, D.: Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia. Int. J. Coal Geol. 70(1–3), 150–165 (2007)

    Article  Google Scholar 

  • Grandstaff, D.E.: Changes in surface area and morphology and the mechanism of forsterite dissolution. Geochim. Cosmochim. Acta 42, 1899–1901 (1978)

    Article  Google Scholar 

  • Gundogan, O., Mackay, E., Todd, A.: Comparison of numerical codes for geo- chemical modelling of \(\text{ CO }_{2}\) storage in target sandstone reservoirs. Chem. Eng. Res. Des. 89(9), 1805–1816 (2011)

    Article  Google Scholar 

  • Gunter, W.D., Bachu, S., Benson, S.M.: The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage for carbon dioxide. In: Baines, S.J., Worden, R.H. (eds.) Geological Storage of Carbon Dioxide, vol. 233, pp. 129–145. Geological Society Special Publication, London (2004)

    Google Scholar 

  • Gunter, W.D., Perkins, E.H., Hutcheon, I.: Aquifer disposal of acid gases: modeling of water–rock reactions for trapping of acid wastes. Appl. Geochem. 15, 1085–1095 (2000)

    Article  Google Scholar 

  • Gunter, W.D., Perkins, E.H., McCann, T.J.: Aquifer disposal of \(\text{ CO }_{2}\)-rich gases: reaction design for added capacity. Energy Convers. Manag. 34, 941–948 (1993)

    Article  Google Scholar 

  • Hashimoto, S., Suzuki, M.: Vertical distribution of carbon dioxide diffusion coefficients and production rates in forest soils. Soil. Sci. Soc. Am. J. 66, 1151–1158 (2002)

    Article  Google Scholar 

  • Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and tempera- tures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 \(^{\circ }\text{ C }\) and 5 kb. Am. J. Sci. 281, 1249–1516 (1981)

    Article  Google Scholar 

  • Hellevang, H., Declercq, J., Aagaard, P.: Why is dawsonite absent in \(\text{ CO }_{2}\) charged reservoirs? Oil Gas Sci. Technol. 66, 119–135 (2011)

    Article  Google Scholar 

  • Hitchon, B., Gunter, W.D., Gentzis, T., Bailey, R.T.: Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers. Manag. 40(8), 825–843 (1999)

    Article  Google Scholar 

  • Holloway, S.: The Underground Disposal of Carbon Dioxide, Final Report of JOULE II Project No. CT92-0031. British Geological Survey (1996)

  • Holloway, S.: Storage of fossil fuel derived carbon dioxide beneath the surface of the Earth. Ann. Rev. Energy Environ. 26, 145–166 (2001)

    Article  Google Scholar 

  • Horvath, F., Berckheimer, H.: Mediterranean backarc-basins. In: Berckheimer H., Hsü K. (eds). AlpineeMediterranean-geodynamics. AGU geodynamics series, 141–163 (1982)

  • IEA, Technology roadmap: Carbon capture and storage. Special publication (2009)

  • Izgec, O., Demiral, B., Bertin, H., Akin, S.: Experimental and numerical investigation of carbon sequestration in deep saline aquifers. In: SPE/EPA/DOE Exploration and Production Environmental Conference, Galveston, SPE Paper 94697 (2005)

  • Izgec, O., Demiral, B., Bertin, H., Akin, S.: \(\text{ CO }_{2}\) injection into saline carbonate aquifer formations II: comparison of numerical simulations to experiments. Transp. Porous Media 73, 57–74 (2007)

    Article  Google Scholar 

  • Johnson, J.W., Nitao, J.J., Steefel, C.I., Knauss, K.G.: Reactive transport modeling of geologic \(\text{ CO }_{2}\) sequestration in saline aquifers: the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration. First National Conference on Carbon Sequestration. May 14–17, 2001, Washington, D.C., 60 (2001)

  • Johnson, J.W., Nitao, J.J., Knauss, K.G.: Reactive transport modelling of \(\text{ CO }_{2}\) storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. Geol. Soc. Lond. Spec. Publ. 233(1), 107–128 (2004)

    Article  Google Scholar 

  • Johnson, J.W., Nitao, J.J., Morris, J.P.: Reactive transport modeling of cap rock integrity during natural and engineered CO\(_2\) storage, Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO\(_2\) Capture Project, v. 2: Geologic Storage of Carbon Dioxide with Monitoring and Verification, S.M. Benson, (ed.), Elsevier, London, pp. 787–814 (2005)

  • Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT 92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 \(^{\circ }\text{ C }\). Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  • Jones, D.J., Beaubien, S.E., Baubron, J.C., Cinti, D., Davis, J.R., Emery, C. et al.: Continued soil gas monitoring at the Weyburn unit in 2004. Report No. COAL R288 DTI/Pub URN 05/1261 (2006)

  • Klein, E., De Lucia, M., Kempka, T., Kühn, M.: Evaluation of long-term mineral trapping at the Ketzin pilot site for \(\text{ CO }_{2}\) storage: an integrative approach using geochemical modelling and reservoir simulation. Int. J. Greenh. Gas Control 19, 720–730 (2013)

    Article  Google Scholar 

  • Kuhn, M., Chiang, W.-H.: Processing Shemat, Ver. 4.0.0, SHEMAT Ver. 8.0, J. Bartels, C. Clauser, M. Kuhn, D. Mottaghy, V. Rath, R. Wagner & A. Wolf, Springer-Verlag, Berlin, Heidelberg (2003)

  • Lasaga, A.C.: Chemical kinetics of water–rock interactions. J. Geophys. Res. 89, 4009–4025 (1984)

    Article  Google Scholar 

  • Lasaga, A.C.: Fundamental approaches in describing mineral dissolution and precipitation rates. In: White, A.F., Brantley, S.L. (eds.) Chemical Weathering Rates of Silicates Minerals, Reviews in Mineralogy 31, pp. 23–86. BookCrafters, Chelsea (1995)

  • Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E., Nagy, K.L.: Chemical weathering rate laws and the global cycles. Geochim. Cosmochim. Acta 58(10), 2361–2386 (1994)

    Article  Google Scholar 

  • Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, vol. 34. Mineralogical society of America, Washington DC (1996)

    Google Scholar 

  • Liu, N., Liu, L., Qu, X., Yang, H., Wang, L., Zhao, S.: Genesis of authigene carbon- ate minerals in the Upper Cretaceous reservoir, Honggang Anticline, Songliao Basin: a natural analog for mineral trapping of natural \(\text{ CO }_{2}\) storage. Sediment. Geol. 237(3–4), 166–178 (2011)

    Article  Google Scholar 

  • Lutterotti, L., Matthies, S., Wenk, H-R.: MAUD (Material Analysis Using Diffraction): a user friendly leakage, therefore a major effort should be done in order to study this kind of systems. Java program for Rietveld Texture Analysis and more, Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 1, 159 (1999)

  • Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A.. In: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK & USA: IPCC, Cambridge University Press, Cambridge (2007)

  • Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L.: Carbon dioxide capture and storage. Intergovernmental panel on climate change. In: Chapter 5: underground geological storage. UK: IPCC, Cambridge University Press, Cambridge (2005)

  • Marini, L.: Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling. Developments in Geochemistry. Elsevier Science, New York (2007)

    Google Scholar 

  • Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)

    Article  Google Scholar 

  • Milly, P.C.D.: Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric-head based formulation and a numerical model. Water Resour. Res. 18(3), 489–498 (1982)

    Article  Google Scholar 

  • Minissale, A.: Origin, transport and discharge of \(\text{ CO }_{2}\) in Central Italy. Earth Sci. Rev. 66, 89–141 (2004)

    Article  Google Scholar 

  • Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Model Study on the kinetics of oil formation damage due to salt precipitation from injection. J. Pet. Sci. Eng. 46(4), 299–299 (2005)

    Article  Google Scholar 

  • Moore, J., Adams, M., Allis, R., Lutz, S., Rauzi, S.: Mineralogical and geochemical consequences of the long- term presence of \(\text{ CO }_{2}\) in natural reservoirs: an example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chem. Geol. 217, 365–385 (2005)

    Article  Google Scholar 

  • Morettini E., Santantonio M., Bartolini A., Cecca F., Baumgartner P.O., Hunziker J.C.: Carbon isotope stratigraphy and carbonate production during the Early-Middle Jurassic: examples from the Umbria-Marche-Sabina Apennines (central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology. 184, 251–273 (2002)

  • Montegrossi, G., Cantucci, B., Vaselli, O., Quattrocchi, F.: Reconstruction of porosity profile in an off-shore well. Bollettino di Geofisica Teorica ed Applicata 49(2), 408–410 (2008)

    Google Scholar 

  • Narasimhan, T.N., Witherspoon, P.A.: An integrated finite difference method for analyzing fluid flow in porous media. Water Resour. Res. 12, 57–64 (1976)

    Article  Google Scholar 

  • Nghiem, L., Sammon, P., Grabenstetter, J., Ohkuma, H.: Modeling \(\text{ CO }_{2}\) storage in aquifers with a fully-coupled geochemical EOS compositional simulator. In: SPE/DOE Symposium on Improved Oil Recovery, 7–21 April 2004, Tulsa, SPE 89474 (2004)

  • Noiriel, C., Luquot, L., Made, B., Raimbault, L., Gouze, P., van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modeling study. Chem. Geol. 265, 160–170 (2009)

    Article  Google Scholar 

  • Obi, E.-O., Blunt, M.J.: Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resour. Res. 42 (2006)

  • Palandri, J.L., Kharaka, Y.K.: A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geo- chemical Modeling: U.S. Geological Survey Water-Resources Investigations Report 04–1068 (2004)

  • Palmer, B.J.: Calculation of thermal-diffusion coefficients from plane-wave fluctuations in the heat energy density. Phys. Rev. E 49(3), 2049–2057 (1994)

    Article  Google Scholar 

  • Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64(5), 1447–1460 (1999)

    Article  Google Scholar 

  • Parkhurst, D.L., Appelo, C.A.J.: User’s Guide to PHREEQC (Version 2)–A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and inverse geochemical calculations. In: U. S. Geological Survey Water-Resources Investigations Report 99–4259 (1999)

  • Pauwels, H., Gaus, I. le Nindre, Y.M., Pearce, J., Czernichowski-Lauriol, I.: Chemistry of fluids from a natural analogue for a geological CO\(_2\) storage site (Montmiral, France): Lessons for CO\(_2\)-water-rock interaction assessment and monitoring. Appl. Geochem. 22, 2817–2833 (2007)

  • Pearce, J.M., Holloway, S., Wacker, H., Nelis, M.K., Rochelle, C., Bateman, K.: Natural occurences as analogues for the geological disposal of carbon dioxide. Energy Convers. Manag. 37, 1123–1128 (1996)

    Article  Google Scholar 

  • Procesi, M., Cantucci, B., Buttinelli, M., Armezzani, G., Quattrocchi, F., Boschi, E.: Strategic use of the underground in an energy mix plan: synergies among \(\text{ CO }_{2}, \text{ CH }_{4}\) geological storage and geothermal energy. Latium Region case study (Central Italy). Appl. Energy 110, 104–131 (2013)

    Article  Google Scholar 

  • Pruess, K.: Numerical studies of fluid leakage from a geologic disposal reservoir for \(\text{ CO }_{2}\) show self-limiting feedback between fluid flow and heat transfer. Lawrence Berkeley National Laboratory, Paper LBNL?57362 (2005)

  • Pruess, K., García, J.: Multiphase flow dynamics during \(\text{ CO }_{2}\) injection into saline aquifers. Environ. Geol. 42, 282–295 (2002)

    Article  Google Scholar 

  • Quattrocchi, F., Cantucci, B., Cinti, D., Galli, G., Pizzino, L., Sciarra, A.: Continuous/ discrete geochemical monitoring of \(\text{ CO }_{2}\) natural analogues and of diffuse degassing structures (DDS): hints for \(\text{ CO }_{2}\) storage sites geochemical protocol. Energy Proc. 1, 2135–2142 (2008)

    Article  Google Scholar 

  • Raffensperger, J.P.: Numerical simulation of sedimentary basin-scale hydrochemical processes. In: Corapcioglu, Y.C. (ed.) Advances in Porous Media, p. 440. Elsevier Science, Amsterdam (1996)

    Google Scholar 

  • Robertson, E.C.: Thermal properties of rocks, U.S.G.S. Open file report 88–441, 106 pp., U.S. Geological Survey, Reston, Va. (1988)

  • Rosembaum, G., Lister, G.S., Duboz, C.: Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. In: Rosembaum, G., Lister, G.S. (eds.) Reconstruction of the Evolution of the AlpineeHimalayan Orogeny, vol. 8, pp. 107–130. Geoscience Publishing Ltd, Alta (2002)

    Google Scholar 

  • Rutqvist, J., Tsang, C.-F.: A study of caprock hydromechanical changes associated with \(\text{ CO }_{2}\) injection into a brine aquifer. Environ. Geol. 42, 296–305 (2002)

    Article  Google Scholar 

  • Schaef, H.T., Mcgrail, B.P., Owen, A.T.: Carbonate mineralization of volcanic province basalts. Int. J. Greenh. Gas Control 4, 249–261 (2010)

    Article  Google Scholar 

  • Scrocca, D., Doglioni, C., Innocenti, F.: Constraints for an interpretation of the Italian geodynamics: a review. In: Scrocca, D., Doglioni, C., Innocenti, F., Manetti, P., Mazzotti, A., Bertelli, L., Burbi, L., Doffizi, S. (eds.) CROP Atlas: Seismic Reflection Profiles of the Italian Crust, vol. 62, pp. 15–46. Memorie Descrittive della Carta Geologica d’Italia, Rome (2003)

    Google Scholar 

  • Singh, T.N., Sinha, S., Singh, V.K.: Prediction of thermal conductivity of rock through physico-mechanical properties. Build. Environ. 42, 146–155 (2007)

    Article  Google Scholar 

  • Smith, J.W., Milton, C.: Dawsonite in the green river formation of Colorado. Econ. Geol. 61, 1029–1042 (1966)

    Article  Google Scholar 

  • Spycher, N., Pruess, K.: \(\text{ CO }_{2}\)–H\(_{2}\)O mixtures in the geological sequestration of \(\text{ CO }_{2}\). II. Partitioning in chloride brines at \(12\)\(100^{\circ }\text{ C }\) and up to 600 bar. Geochim. Cosmochim. Acta 69, 3309–3320 (2005)

  • Sonnenthal, E., Ito, A., Spycher, N., Yui, M., Apps, J., Sugita, Y., Conrad, M., Kawakami, S.: Approaches to modeling coupled thermal, hydrological, and chemical processes in the Drift Scale Heater Test atYucca Mountain. Int. J. Rock Mech. Min. Sci. 42, 6719–6987 (2005)

    Article  Google Scholar 

  • Soong, Y., Goodman, A.L., McCarthy-Jones, J.R., Baltrus, J.P.: Experimental and simulation studies on mineral trapping of \(\text{ CO }_{2}\) with brine. Energy Convers. Manag. 45, 1845–1859 (2004)

    Article  Google Scholar 

  • Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system. Am. J. Sci. 294, 529–592 (1994)

    Article  Google Scholar 

  • Tamini, A., Rinker, B., Sandall, O.C.: Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293–368 K. J. Chem. Eng. Data 39, 330–332 (1994)

    Article  Google Scholar 

  • Trémosa, J., Castillo, C., Vong, C.Q., Kervévan, C., Lassin, A., Audigane, P.: Long-term Assessment of Geochemical Reactivity of \(\text{ CO }_{2}\) Storage in Highly Saline Aquifers: Application to Ketzin. In Salah and Snøhvit storage sites. Int. J. Greenh. Gas Control 20, 2–26 (2014)

  • Velbel, M.A.: Weathering processes of rock-forming minerals. Min. Assoc. Can. Short Course Handb. 10, 67–111 (1984)

    Google Scholar 

  • Velbel, M. A.: Influence of surface area, surface characteristics, and solution composition on feldspar weathering rates. In Geochemical Processes at Mineral Surfaces, Am. Chem. Soc. Symp. Series No. 323, 615–634 (1986)

  • Verma, A., Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. 93, 1159–1173 (1988)

    Article  Google Scholar 

  • Voltattorni, N., Sciarra, A., Caramanna, G., Cinti, D., Pizzino, L., Quattrocchi, F.: Gas geochemistry of natural analogues for the studies of geological \(\text{ CO }_{2}\) sequestration. App. Geochem. 24(7), 1339–1346 (2009)

  • Wang, L.S., Lang, Z.X., Guo, T.M.: Measurement and correlation of the diffusion coefficients of carbon dioxide in liquid hydrocarbon under elevated pressures. Fluid Phase Equilib. 117, 364–372 (1996)

    Article  Google Scholar 

  • Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16:1016–1024 (1980)

  • Witherspoon, P.A., Wang, J.S.Y., Iwai, k, Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (2010)

    Article  Google Scholar 

  • Weir, G.J., White, S.P., Kissling, W.M.: Reservoir storage and containment of greenhouse gases, In K. Pruess (eds.), Proceedings of the TOUGH Workshop ‘95, Lawrence Berkeley National Laboratory Report LBL-37200, pp. 233–238, Berkeley (1995)

  • Wilson, M.J.: Chemical weathering of some primary rock forming minerals. Soil Sci. 119, 349–355 (1975)

    Article  Google Scholar 

  • White, A.F., Peterson, M.L.: Role of reactive-surface- area characterization in geochemical kinetic models. In: Melchior, D.C., Bassett, R.L. (eds.), Chemical Modeling of Aqueous Systems II. American Chemical Society Symposium Series 416, Washington, DC (Chapter 35), 461–475 (1990)

  • Wolery, T.J.: EQ3NR, A computer program for geo- chemical aqueous speciation solubility calculations: theoretical manual, user’s guide, and related documentation (Version 7.0). UCRL-MA-110662-PT-III, Lawrence Liver- more National Laboratory, Livermore (1992)

  • Worden, R.H.: Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: a natural analogue for a potential mineral product of subsurface \(\text{ CO }_{2}\) storage for greenhouse gas reduction. Mar. Pet. Geol. 23(1), 61–77 (2006)

    Article  Google Scholar 

  • Xu, T., Apps, J.A., Pruess, K.: Numerical simulation of \(\text{ CO }_{2}\) disposal by mineral trapping in deep aquifers. Appl. Geochem. 19, 917–936 (2004)

    Article  Google Scholar 

  • Xu, T., Apps, J.A., Pruess, K.: Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 217, 295–318 (2005)

    Article  Google Scholar 

  • Xu, T., Apps, J.A., Pruess, K., Yamamoto, H.: Numerical modeling of injection and mineral trapping of \(\text{ CO }_{2}\) with \(\text{ H }_{2}\text{ S }\) and \(\text{ SO }_{2}\) in a sandstone formation. Chem. Geol. 242, 319–346 (2007)

    Article  Google Scholar 

  • Xu, T., Kharaka, Y.K., Doughty, C.A., Freifeld, B.M., Daley, T.M.: Reactive transport modeling to study changes in water chemistry induced by \(\text{ CO }_{2}\) injection at the Frio-I Brine Pilot. Chem. Geol. 271, 153–164 (2010)

    Article  Google Scholar 

  • Xu, T., Pruess, K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. methodology. Am. J. Sci. 301, 16–33 (2001)

    Article  Google Scholar 

  • Xu, T., Pruess, K., Brimhall, G.: An improved equilibrium-kinetics speciation algorithm for redox reactions in variably saturated subsurface flow system. Comput. Geosci. 25, 655–666 (1999)

    Article  Google Scholar 

  • Xu, T., Sonnenthal, E.L., Spycher, N., Pruess, K.: TOURGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput. Geosci. 32, 145–165 (2006)

    Article  Google Scholar 

  • Yasuhara, H., Polak, A., Mitani, Y., Halleck, P.M., Elsworth, D.: Evolution of fracture permeability through fluid–rock reaction under hydrothermal conditions. Earth Planet. Sci. Lett. 244(1–2), 186–200 (2006)

  • Zerai, B., Saylor, B.Z., Matisoff, G.: Computersimulation of \(\text{ CO }_{2}\) trapped through mineral precipitation in the Rose Run Sandstone. Ohio. Appl. Geochem. 21(2), 223–240 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Elena Pecchioni, Federico Lucci, Andrea Cavallo for their help during XRD, petrographic, and SEM-EDS analyses, respectively. Gianfranco Galli is warmly thanked for his assistance in the various shell scripting and Gabriele Bicocchi for his support in the early stage of the model. Many thanks are due to Luca Pizzino, Alessandra Sciarra, and Monia Procesi for their useful suggestions. Authors would like to greatly thank SMT Microtechnology Company for providing an educational license of Kingdom suite software, used for seismic interpretation and 3D modeling. We wish to express our gratitude to M.J. Blunt, Associate Editor, and three anonymous reviewers for their suggestions and comments, which greatly improved an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cantucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantucci, B., Montegrossi, G., Buttinelli, M. et al. Geochemical Barriers in \(\hbox {CO}_{2}\) Capture and Storage Feasibility Studies. Transp Porous Med 106, 107–143 (2015). https://doi.org/10.1007/s11242-014-0392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0392-6

Keywords

Navigation