Skip to main content
Log in

Overexpression of the AtWUSCHEL gene promotes somatic embryogenesis and lateral branch formation in birch (Betula platyphylla Suk.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Birch (Betula platyphylla Suk.) is a deciduous tree with medicinal and ornamental value. During the process of genetic transformation, somatic embryos do not easily develop into transgenic plants, which is a limitation in genetic breeding. The Arabidopsis thaliana WUSCHEL (AtWUS) gene, which is a transcription factor, plays an important role in maintaining and regulating stem cell characteristics, which determines whether the stem cell population is differentiated. To explore methods for inducing somatic embryogenesis (SE) in birch, we overexpressed the AtWUS gene and transferred it to birch. The expression of AtWUS increased the SE rate from 101.4 to 717.1%. The expression of the AtWUS gene led to the downregulation of BpWUS gene expression in both calli and globular embryos as well as bud meristems. The expression of a few genes, i.e., BpLEC1 (LEAFY COTYLEDON 1), BpLEC2 (LEAFY COTYLEDON 2) and BpFUS3 (FUSCA 3), was upregulated during both embryogenesis and bud meristem development. However, BpABI3 (ABSCISIC ACID INSENSITIVE 3) gene expression was upregulated only in calli embryos, while BpSTM (SHOOT MERISTEMLESS) and BpCUC2 (CUP-SHAPED COTYLEDON 2) gene expression was upregulated only in bud meristems. This result indicated that overexpression of the AtWUS gene promoted SE by increasing the expression of SE-related genes. In conclusion, this study focused on the role of the AtWUS gene in birch SE and the molecular mechanism by which SE was promoted.

Key message

This work indicates that overexpression of the WUSCHEL gene from Arabidopsis thaliana in birch can promote somatic embryogenesis and increase the development of lateral branches and buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

SAM:

Shoot apical meristem

6-BA:

6-Benzylaminopurine;

NAA:

Naphthalene acetic acid

IBA:

Indole-3-butyric acid

CIM:

Callus induction medium

SIM:

Shoot induction medium

ABA:

Abscisic acid

GA:

Gibberellic acid

ABI3:

Abscisic acid insensitive 3

AGL15:

Agamous-like 15

BBM:

Baby boom

FUS3:

Fusca 3

LEC1:

Leafy cotyledon 1

LEC2:

Leafy cotyledon 2

SE:

Somatic embryogenesis

WUS:

Wuschel

STM:

Shoot meristemless

CLV3:

Clavata3

CUC1:

Cup-shaped cotyledon 1

CUC2:

Cup-shaped cotyledon 2

PIN1:

Pin-formed 1

References

  • Aida M (1997) Genes involved in organ separation in Arabidopsis: an Analysis of the cup-shaped cotyledon mutant. The Plant Cell Online 9:841–857

    Article  CAS  Google Scholar 

  • Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, Quiroz-Figueroa FR, Loyola-Vargas VM, Rodriguez-Zapata LC, Burgeff D’Hondt C, Suárez-Solís VM, Castaño E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue Organ Cult 94:171–180

    Article  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Article  Google Scholar 

  • Baurle I (2005) Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. The Plant Cell Online 119:823–831

    Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  CAS  PubMed  Google Scholar 

  • Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630

    Article  CAS  PubMed  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401

    Article  CAS  PubMed  Google Scholar 

  • Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73:798–813

    Article  CAS  PubMed  Google Scholar 

  • Elahi N, Duncan RW, Stasolla C (2016) Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryogenesis of Brassica napus L. J Genet Eng Biotechnol 14:19–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  CAS  PubMed  Google Scholar 

  • Feher A (2015) Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402

    Article  CAS  PubMed  Google Scholar 

  • Fister AS, Landherr L, Perryman M, Zhang Y, Guiltinan MJ, Maximova SN (2018) Glucocorticoid receptor-regulated TcLEC2 expression triggers somatic embryogenesis in Theobroma cacao leaf tissue. PLoS One 13:e0207666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  CAS  PubMed  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    Article  CAS  PubMed  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Liu C, Xia H, Bi Y, Zhao C, Zhao S, Hou L, Li F, Wang X (2013) Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants. PLoS One 8:e71714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutilier K (2017) The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis. Plant Physiol 175:848–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Ochatt SJ, Kumar V (2020) WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep 39:431–444

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Suzuki M, Mccarty DR (2014) Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip Rev Dev Biol 3:135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadri A, Grenier De March G, Guerineau F, Cosson V, Ratet P (2021) WUSCHEL overexpression promotes callogenesis and somatic embryogenesis in Medicago truncatula Gaertn. Plants (basel) 10:715

    Article  CAS  Google Scholar 

  • Kieffer M (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell Online 18:560–573

    Article  CAS  Google Scholar 

  • Kim JY, Adhikari PB, Ahn CH, Kim DH, Chang Kim Y, Han JY, Kondeti S, Choi YE (2019) High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius. J Ginseng Res 43:38–48

    Article  PubMed  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (cambridge, England) 122:87–96

    Article  CAS  Google Scholar 

  • Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129:3195–3206

    Article  CAS  PubMed  Google Scholar 

  • Li K, Wang J, Liu C, Li C, Qiu J, Zhao C, Xia H, Ma C, Wang X, Li P (2019) Expression of AtLEC2 and AtIPTs promotes embryogenic callus formation and shoot regeneration in tobacco. BMC Plant Biol 19:314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Martinez MT, San-Jose MDC, Arrillaga I, Cano V, Morcillo M, Cernadas MJ, Corredoira E (2019) Holm Oak somatic embryogenesis: current status and future perspectives. Front Plant Sci 10:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez-Hernandez HA, Ledezma-Rodriguez M, Avilez-Montalvo RN, Juarez-Gomez YL, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas VM (2019) Signaling overview of plant somatic embryogenesis. Front Plant Sci 10:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon J, Hake S (2011) How a leaf gets its shape. Curr Opin Plant Biol 14:24–30

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:42–44

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 8:2095–2100

    Article  CAS  Google Scholar 

  • Negin B, Shemer O, Sorek Y, Eshed Williams L (2017) Shoot stem cell specification in roots by the WUSCHEL transcription factor. PLoS One 12:e0176093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parcy F (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. The Plant Cell Online 6:1567–1582

    CAS  Google Scholar 

  • Qu C, Bian X, Han R, Jiang J, Yu Q (2020) Liu G (2020) Expression of BpPIN is associated with IAA levels and the formation of lobed leaves in Betula pendula ‘Dalecartica.’ J For Res 31(1):87–97

    Article  CAS  Google Scholar 

  • Reddy GV (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667

    Article  CAS  PubMed  Google Scholar 

  • Reddy GV (2008) Live-imaging stem-cell homeostasis in the Arabidopsis shoot apex. Curr Opin Plant Biol 11:88–93

    Article  CAS  PubMed  Google Scholar 

  • Roscoe TT, Guilleminot J, Bessoule JJ, Berger F, Devic M (2015) Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in arabidopsis. Plant Cell Physiol 56:1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Rose RJ (2019) Somatic embryogenesis in the medicago truncatula model: cellular and molecular mechanisms. Front Plant Sci 10:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Salaun C, Lepiniec L, Dubreucq B (2021) Genetic and molecular control of somatic embryogenesis. Plants (basel) 10:1467

    Article  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Solorzano-Cascante P, Sanchez-Chiang N, Jimenez VM (2018) Explant type, culture system, 6-Benzyladenine, meta-topolin and encapsulation affect indirect somatic embryogenesis and regeneration in Carica papaya L. Front Plant Sci 9:1769

    Article  PubMed  PubMed Central  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Paul P, Joshi S, Perry SE (2020) Genetic activity during early plant embryogenesis. Biochem J 477:3743–3767

    Article  CAS  PubMed  Google Scholar 

  • To A (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant Cell Online 18:1642–1651

    Article  CAS  Google Scholar 

  • Wisniewska J, Xu J, Brewer PB, Blilou L, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  CAS  PubMed  Google Scholar 

  • Wojcik AM, Wojcikowska B, Gaj MD (2020) Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. Int J Mol Sci 21:1333

    Article  CAS  PubMed Central  Google Scholar 

  • Xiao Y, Chen Y, Ding Y, Wu J, Wang P, Yu Y, Wei X, Wang Y, Zhang C, Li F, Ge X (2018) Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Sci 270:157–165

    Article  CAS  PubMed  Google Scholar 

  • Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development (cambridge, England) 137:3581–3589

    Article  CAS  Google Scholar 

  • Yang J, Yang D, Lü W, Zhang X, Ma M, Liu G, Jiang J, Li C (2021) Somatic embryogenesis and plant regeneration in Betula platyphalla. J Forestry Res 32:937–944

    Article  CAS  Google Scholar 

  • Zeng F, Qian J, Luo W, Zhan Y, Xin Y, Yang C (2010) Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla). Biotechnol Lett 32:151–156

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Zhang X, Yang Z, Wu J, Li F, Duan L, Liu C, Lu L, Zhang C, Li F (2014) AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS One 9:e87502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the Fundamental Research Fund of Heilongjiang Province.

Funding

This work was supported by the Science Foundation of Heilongjiang Province, China (No. C2018002), Modern Agricultural Industrial Technology System Funding of Shandong Province, China (No. SDAIT-04–03), Agricultural Variety Improvement Project of Shandong Province, China (No. 662–2316109), and The Fundamental Research Funds for the Central Universities (No. 2572020DY15).

Author information

Authors and Affiliations

Authors

Contributions

All the authors read and approved the final manuscript. HL, LS and QJX designed the experiments and wrote the manuscript. HL, YTH, WZW and ZYC analyzed these data. Others participated in the experiments. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Long Sun or Qijiang Xu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Paloma Moncaleán.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Huang, Y., Wang, W. et al. Overexpression of the AtWUSCHEL gene promotes somatic embryogenesis and lateral branch formation in birch (Betula platyphylla Suk.). Plant Cell Tiss Organ Cult 150, 371–383 (2022). https://doi.org/10.1007/s11240-022-02290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02290-9

Keywords

Navigation