Skip to main content

Advertisement

Log in

Up-regulated lncRNA SNHG9 mediates the pathogenesis of dilated cardiomyopathy via miR-326/EPHB3 axis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is a common cause of heart failure and also a major indication for heart transplantation. It has been reported that long non-coding RNAs (lncRNAs) are involved in the development of various cardiac diseases. However, the roles of lncRNAs in DCM are not fully understood. In this study, we uncovered that serum SNHG9 (small nucleolar RNA host gene 9, a lncRNA) serves as a biomarker for dilated cardiomyopathy. GEO datasets (GSE124405) were re-analyzed to identify the aberrant lncRNAs in the plasma sample of patients with heart failure. The receiver operating characteristic (ROC) curve was used to assess the expression alterations of the aberrant lncRNAs including SNHG9, XIST, PLCK2-AS1, KIF9-AS1, ARHGAP31-AS1, LINC00482, etc. Using the area under curve (AUC) of ROC, we found that serum SNHG9 exhibits considerable performance in distinguishing DCM from normal control and DCM stage-III from stage-I/II (New York Heart Association Class). Furthermore, we determined the serum SNHG9 expression level of the doxorubicin (Dox)-induced DCM mice model, and found that the upregulated SNHG9 is negatively associated with heart function. Besides, the deletion of SNHG9 by AAV-9 alleviated heart injury in the Dox-induced mice model. Taken together, the current results suggest that SNHG9 is a novel regulatory factor in dilated cardiomyopathy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

DCM:

dilated cardiomyopathy

Dox:

doxorubicin

SNHG9:

small nucleolar RNA host gene 9

LncRNA:

long noncoding RNA

HF:

heart failure

HE:

hematoxylin-eosin

CHAST:

cardiac hypertrophy-associated transcript

LIPCAR:

the mitochondrial long noncoding RNA uc022bqs.1

AAV-9:

adeno-associated virus-9

LVEF:

left ventricular ejection fraction

LVFS:

left ventricular fractional shortening

LVIV:

LV internal volume

EPHB3:

Ephrin type-B receptor 3

FGF1:

fibroblast growth factor 1

PDE1B:

phosphodiesterase 1B

References

  1. Merlo M, Cannatà A, Gobbo M, Stolfo D, Elliott PM, Sinagra G (2018) Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail 20:228–239. https://doi.org/10.1002/ejhf.1103

    Article  PubMed  Google Scholar 

  2. Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet (London, England) 375:752–762. https://doi.org/10.1016/S0140-6736(09)62023-7

    Article  PubMed  Google Scholar 

  3. Halliday BP, Gulati A, Ali A, Newsome S, Lota A, Tayal U, Vassiliou VS, Arzanauskaite M, Izgi C, Krishnathasan K et al (2018) Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy. Eur J Heart Fail 20:1392–1400. https://doi.org/10.1002/ejhf.1216

    Article  PubMed  Google Scholar 

  4. Jansweijer JA, Nieuwhof K, Russo F, Hoorntje ET, Jongbloed JD, Lekanne Deprez RH, Postma AV, Bronk M, van Rijsingen IA, de Haij S et al (2017) Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail 19:512–521. https://doi.org/10.1002/ejhf.673

    Article  CAS  PubMed  Google Scholar 

  5. Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547. https://doi.org/10.1038/nrcardio.2013.105

    Article  CAS  PubMed  Google Scholar 

  6. Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116:751–762. https://doi.org/10.1161/CIRCRESAHA.116.303549

    Article  CAS  PubMed  Google Scholar 

  7. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  8. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf1475

    Article  PubMed  Google Scholar 

  9. Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575. https://doi.org/10.1161/CIRCRESAHA.114.303915

    Article  CAS  PubMed  Google Scholar 

  10. Feng SG, Bhandari R, Ya L, Zhixuan B, Qiuhui P, Jiabei Z, Sewi M, Ni Z, Jing W, Fenyong S et al (2021) SNHG9 promotes hepatoblastoma tumorigenesis via miR-23a-5p/Wnt3a axis. J Cancer 12:6031–6049. https://doi.org/10.7150/jca.60748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen D, Liu WL, Lu ZW, Cao YM, Ji QH, Wei WJ: SNHG9 (2021) A papillary thyroid cancer cell exosome-enriched lncRNA, inhibits cell autophagy and promotes cell apoptosis of normal thyroid epithelial cell nthy-ori-3 through YBOX3/P21 pathway. Front Oncol 11:647034. https://doi.org/10.3389/fonc.2021.647034.

  12. Li C, Hu J, Hu X, Zhao C, Mo M, Zu X, Li Y (2021) LncRNA SNHG9 is a prognostic biomarker and correlated with immune infiltrates in prostate cancer. Transl Androl Urol 10:215-226. https://doi.org/10.21037/tau-20-1134.

  13. Li RH, Tian T, Ge QW, He XY, Shi CY, Li JH, Zhang Z, Liu FZ, Sang LJ, Yang ZZ et al (2021) A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res. https://doi.org/10.1038/s41422-021-00530-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang B, Li C, Sun Z (2018) Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res 10:2648–2658

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathew T, Williams L, Navaratnam G, Rana B, Wheeler R, Collins K, Harkness A, Jones R, Knight D, O’Gallagher K et al (2017) Diagnosis and assessment of dilated cardiomyopathy: a guideline protocol from the British Society of Echocardiography. Echo Res Pract 4:G1–G13. https://doi.org/10.1530/ERP-16-0037

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Zhang W, Hu T, Ni J, Xu B, Huang W (2020) A doxorubicin-induced murine model of dilated cardiomyopathy in vivo. J Vis Exp. https://doi.org/10.3791/61158

    Article  PubMed  Google Scholar 

  18. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, Fechner H, Muller OJ (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18:199–209. https://doi.org/10.1038/gt.2010.141

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Liu Y, Liu X, Wang W, Wang Z, Hu Y, Zhang Y, Zhang Y, Jose PA, Wei Q, Yang Z (2018) Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation. Redox Biol 19:134–146. https://doi.org/10.1016/j.redox.2018.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin A, Santos DM, Grasberger P, Ahluwalia N, Montesi SB et al (2017) ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med 23:1405–1415. https://doi.org/10.1038/nm.4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castelli G, Fornaro A, Ciaccheri M, Dolara A, Troiani V, Tomberli B, Olivotto I, Gensini GF (2013) Improving survival rates of patients with idiopathic dilated cardiomyopathy in Tuscany over 3 decades: impact of evidence-based management. Circ Heart Fail 6:913–921. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000120

    Article  PubMed  Google Scholar 

  22. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  23. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Roecker EB et al (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658. https://doi.org/10.1056/NEJM200105313442201

    Article  CAS  PubMed  Google Scholar 

  24. Qiu Z, Chen W, Liu Y, Jiang B, Yin L, Chen X (2021) LncRNA AC061961.2 overexpression inhibited endoplasmic reticulum stress induced apoptosis in dilated cardiomyopathy rats and cardiomyocytes via activating wnt/beta-catenin pathway. J Recept Signal Transduct Res 41:494–503. https://doi.org/10.1080/10799893.2020.1828915

    Article  CAS  PubMed  Google Scholar 

  25. Qiu Z, Ye B, Yin L, Chen W, Xu Y, Chen X (2019) Downregulation of AC061961.2, LING01-AS1, and RP11-13E1.5 is associated with dilated cardiomyopathy progression. J Cell Physiol 234:4460–4471. https://doi.org/10.1002/jcp.27247

    Article  CAS  PubMed  Google Scholar 

  26. Martens L, Ruhle F, Witten A, Meder B, Katus HA, Arbustini E, Hasenfuss G, Sinner MF, Kaab S, Pankuweit S et al (2021) A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol. https://doi.org/10.1080/15476286.2021.1952756

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Xiao Z, Chen Y, Xu D, Chen S (2021) Susceptibility modules and genes in hypertrophic cardiomyopathy by WGCNA and ceRNA network analysis. Front Cell Dev Biol 9:822465. https://doi.org/10.3389/fcell.2021.822465.

  28. Wang S, Lv T, Chen Q, Yang Y, Xu L, Zhang X, Wang E, Hu X, Liu Y (2022) Transcriptome sequencing and lncRNA-miRNA-mRNA network construction in cardiac fibrosis and heart failure. Bioengineered 13:7118–7133. https://doi.org/10.1080/21655979.2022.2045839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Qin D, Jiang Z, Zhang J (2019) SNHG9/miR-199a-5p/Wnt2 axis regulates cell growth and aerobic glycolysis in glioblastoma. J Neuropathol Exp Neurol 78:939–948. https://doi.org/10.1093/jnen/nlz078

    Article  CAS  PubMed  Google Scholar 

  30. Song Y, Li H, Ren X, Li H, Feng C (2020) SNHG9, delivered by adipocyte-derived exosomes, alleviates inflammation and apoptosis of endothelial cells through suppressing TRADD expression. Eur J Pharmacol 872:172977. https://doi.org/10.1016/j.ejphar.2020.172977

    Article  CAS  PubMed  Google Scholar 

  31. Ye S, Ni Y (2021) lncRNA SNHG9 promotes cell proliferation, migration, and invasion in human hepatocellular carcinoma cells by increasing GSTP1 methylation, as revealed by CRISPR-dCas9. Front Mol Biosci 8:649976. https://doi.org/10.3389/fmolb.2021.649976.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 81970204); National Natural Science Foundation of China (grant numbers 82100406); Research Project Supported by Shanxi Scholarship Council of China(grant numbers 2020-173); and the international cooperative scientific research foundation of Shanxi Science and Technology Department (grant numbers 201903D421024).

Author information

Authors and Affiliations

Authors

Contributions

Study design: QH. Experiments and data analysis: FZ, HX, HS, HL, CL. All contributed to the writing of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qinghua Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experimental procedures in this study were conducted in accordance with the guidelines of the animal ethical committee for animal experimentation, and the experimental design was approved by Shanxi Medical University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

zhang, F., Shi, H., Xue, H. et al. Up-regulated lncRNA SNHG9 mediates the pathogenesis of dilated cardiomyopathy via miR-326/EPHB3 axis. J Thromb Thrombolysis 55, 634–648 (2023). https://doi.org/10.1007/s11239-023-02798-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02798-7

Keywords

Navigation