Skip to main content
Log in

Comparison of biodegradable and newer generation durable polymer drug-eluting stents with short-term dual antiplatelet therapy: a systematic review and Bayesian network meta-analysis of randomized trials comprising of 43,875 patients

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Newer generation durable polymer drug-eluting stents (DP-DES) and biodegradable polymer DES (BP-DES) have similar efficacy with dual-antiplatelet therapy (DAPT) duration of > 6 months. However, this difference in outcomes have not been well studied in shorter DAPT regime. This study compares the safety and efficacy profiles of DP-DES and BP-DES based on short-term (1–3 months), intermediate-term (4–6 months) and standard DAPT (6–12 months) durations. A search was conducted on Embase and Medline for Randomized Controlled Trials (RCTs) comparing stent types, and DAPT durations. Primary endpoints include cardiac death, myocardial infarction (MI), definite stent thrombosis, stroke, target vessel revascularization (TVR) and major bleeding. Network analysis was conducted to summarize the evidence. A total of 15 RCTs involving 43,875 patients were included. DP-DES was associated with significantly lower major bleeding rates compared to BP-DES (RR 0.44, Crl 0.22–0.83) in short-term DAPT. Among DP-DES patients, short-term DAPT was associated with lower major bleeding risk compared to standard DAPT (RR 0.47, CrI 0.32–0.69). This favorable bleeding profile with short DAPT was not found in BP-DES patients. Cardiac death, MI, definite stent thrombosis, stroke and TVR rates were similar across the various DAPT durations and stent types. Our preliminary findings demonstrated comparable efficacy and safety outcomes between BP-DES and newer generation BP-DES across various DAPT durations. In patients requiring short DAPT, DP-DES had more favourable major bleeding profile compared to BP-DES, without compromising anti-thrombotic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stefanini GG, Holmes DR (2013) Drug-eluting coronary-artery stents. N Engl J Med 368(3):254–265

    Article  CAS  PubMed  Google Scholar 

  2. Räber L, Magro M, Stefanini GG et al (2012) Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents. Circulation 125(9):1110–1121

    Article  PubMed  CAS  Google Scholar 

  3. Stefanini GG, Windecker S (2012) Stent thrombosis. Circulation 5(3):332–335

    PubMed  Google Scholar 

  4. Dores H, Raposo L, Campante Teles R et al (2013) Stent thrombosis with second- versus first-generation drug-eluting stents in real-world percutaneous coronary intervention: analysis of 3806 consecutive procedures from a large-volume single-center prospective registry. J Invasive Cardiol 25(7):330–336

    PubMed  Google Scholar 

  5. Naidu SS, Krucoff MW, Rutledge DR et al (2012) Contemporary incidence and predictors of stent thrombosis and other major adverse cardiac events in the year after XIENCE V implantation: results from the 8,061-patient XIENCE V United States study. JACC: Cardiovasc Interv 5(6):626–635

    Google Scholar 

  6. Nakazawa G, Otsuka F, Nakano M et al (2011) The pathology of neoatherosclerosis in human coronary implants: bare-metal and drug-eluting stents. J Am Coll Cardiol 57(11):1314–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park S-J, Kang S-J, Virmani R, Nakano M, Ueda Y (2012) In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol 59(23):2051–2057

    Article  PubMed  Google Scholar 

  8. Finn Aloke V, Nakazawa G, Kolodgie Frank D, Virmani R (2009) Temporal course of neointimal formation after drug-eluting stent placement. JACC: Cardiovasc Interv 2(4):300–302

    CAS  Google Scholar 

  9. Nebeker JR, Virmani R, Bennett CL et al (2006) Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol 47(1):175–181

    Article  PubMed  Google Scholar 

  10. Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202

    Article  PubMed  Google Scholar 

  11. Finn AV, Nakazawa G, Kolodgie FD, Virmani R (2009) temporal course of neointimal formation after drug-eluting stent placement. JACC: Cardiovasc Interv 2(4):300–302

    Google Scholar 

  12. Vorpahl M, Finn AV, Nakano M, Virmani R (2009) The bioabsorption process: tissue and cellular mechanisms and outcomes. EuroIntervention 5(Suppl F):F28-35

    Article  PubMed  Google Scholar 

  13. El-Hayek G, Bangalore S, Casso Dominguez A et al (2017) Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC: Cardiovasc Interv 10(5):462–473

    Google Scholar 

  14. Levine GN, Bates ER, Bittl JA et al (2016) 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease. J Am Coll Cardiol 68(10):1082–1115

    Article  PubMed  Google Scholar 

  15. Valgimigli M, Bueno H, Byrne RA et al (2017) 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 39(3):213–260

    Article  Google Scholar 

  16. Khan SU, Singh M, Valavoor S et al (2020) dual antiplatelet therapy after percutaneous coronary intervention and drug-eluting stents. Circulation 142(15):1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen S-L, Xu T, Zhang J-J et al (2012) Angioscopy study from a large patient population comparing sirolimus-eluting stent with biodegradable versus durable polymer. Catheter Cardiovasc Interv 80(3):420–428

    Article  PubMed  Google Scholar 

  19. Kandzari DE, Leon MB, Popma JJ et al (2006) Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. J Am Coll Cardiol 48(12):2440–2447

    Article  CAS  PubMed  Google Scholar 

  20. Cutlip DE, Windecker S, Mehran R et al (2007) Clinical end points in coronary stent trials. Circulation 115(17):2344–2351

    Article  PubMed  Google Scholar 

  21. Pascal V, Donald EC, Roxana M et al (2010) Myocardial infarction adjudication in contemporary all-comer stent trials: balancing sensitivity and specificity. EuroIntervention 5(7):871–874

    Article  Google Scholar 

  22. van Valkenhoef G, Lu G, de Brock B, Hillege H, Ades AE, Welton NJ (2012) Automating network meta-analysis. Res Synth Methods 3(4):285–299

    Article  PubMed  Google Scholar 

  23. Béliveau A, Boyne DJ, Slater J, Brenner D, Arora P (2019) BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses. BMC Med Res Methodol 19(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sterne JA, Sutton AJ, Ioannidis JP et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002

    Article  PubMed  Google Scholar 

  25. Sterne JA, Egger M (2005) Regression methods to detect publication and other bias in meta-analysis. Publ Bias Meta-Anal 99:110

    Google Scholar 

  26. Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  PubMed  Google Scholar 

  27. Kaiser C, Galatius S, Jeger R et al (2015) Long-term efficacy and safety of biodegradable-polymer biolimus-eluting stents: main results of the Basel Stent Kosten-Effektivitäts Trial-PROspective Validation Examination II (BASKET-PROVE II), a randomized, controlled noninferiority 2-year outcome trial. Circulation 131(1):74–81

    Article  CAS  PubMed  Google Scholar 

  28. Zbinden R, Piccolo R, Heg D et al (2016) Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stent for percutaneous coronary revascularization: 2-year results of the BIOSCIENCE trial. J Am Heart Assoc 5(3):e003255

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kedhi E, Fabris E, van der Ent M et al (2018) Six months versus 12 months dual antiplatelet therapy after drug-eluting stent implantation in ST-elevation myocardial infarction (DAPT-STEMI): randomised, multicentre, non-inferiority trial. BMJ 363:k3793

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buiten RA, Ploumen EH, Zocca P et al (2019) Thin, very thin, or ultrathin strut biodegradable or durable polymer-coated drug-eluting stents: 3-year outcomes of BIO-RESORT. JACC: Cardiovasc Interv 12(17):1650–1660

    Google Scholar 

  31. Watanabe H, Domei T, Morimoto T et al (2019) Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial. JAMA 321(24):2414–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kai X, Bo X, Changdong G et al (2021) Biodegradable polymer-coated versus durable polymer-coated sirolimus-eluting stents: the final 5-year outcomes of the I-LOVE-IT 2 trial. EuroIntervention 16(18):e1518–e1526

    Article  Google Scholar 

  33. Feres F, Costa RA, Abizaid A et al (2013) Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial. JAMA 310(23):2510–2522

    CAS  PubMed  Google Scholar 

  34. De Luca G, Damen SA, Camaro C et al (2019) Final results of the randomised evaluation of short-term dual antiplatelet therapy in patients with acute coronary syndrome treated with a new-generation stent (REDUCE trial). EuroIntervention 15(11):e990–e998

    Article  PubMed  Google Scholar 

  35. Fawzy A-AY, Kenawi MM, Aziz AAE, Moharam AN, Attia IM (2019) Comparison between the outcomes of using biodegradable-polymer drug-eluting stents and those of using durable-polymer drug-eluting stents in acute coronary syndrome patients undergoing percutaneous coronary intervention. Open Access Maced J Med Sci 7(9):1466–1470

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim BK, Hong MK, Shin DH et al (2012) A new strategy for discontinuation of dual antiplatelet therapy: the RESET Trial (REal safety and efficacy of 3-month dual antiplatelet therapy following endeavor zotarolimus-eluting stent implantation). J Am Coll Cardiol 60(15):1340–1348

    Article  CAS  PubMed  Google Scholar 

  37. Yun KH, Lee SY, Cho BR et al (2021) Safety of 3-month dual antiplatelet therapy after implantation of ultrathin sirolimus-eluting stents with biodegradable polymer (Orsiro): results from the SMART-CHOICE trial. J Am Heart Assoc 10(1):e018366

    Article  PubMed  Google Scholar 

  38. Hong SJ, Shin DH, Kim JS et al (2016) 6-Month versus 12-month dual-antiplatelet therapy following long everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JACC: Cardiovasc Interv 9(14):1438–1446

    Google Scholar 

  39. Cho JY, Lee S-Y, Yun KH et al (2021) Factors related to major bleeding after ticagrelor therapy: results from the TICO trial. J Am Heart Assoc 10(7):e019630–e019630

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vlachojannis GJ, Smits PC, Hofma SH et al (2017) Biodegradable polymer biolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with coronary artery disease: final 5-year report from the COMPARE II trial (abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent). JACC: Cardiovasc Interv 10(12):1215–1221

    Google Scholar 

  41. Vranckx P, Valgimigli M, Jüni P et al (2018) Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 392(10151):940–949

    Article  CAS  PubMed  Google Scholar 

  42. Mehran R, Rao SV, Bhatt DL et al (2011) Standardized bleeding definitions for cardiovascular clinical trials. Circulation 123(23):2736–2747

    Article  PubMed  Google Scholar 

  43. Group TTS (1989) Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction. N Engl J Med 320(10):618–627

    Article  Google Scholar 

  44. Mehran R, Pocock S, Nikolsky E et al (2011) Impact of bleeding on mortality after percutaneous coronary intervention. JACC: Cardiovasc Interv 4(6):654–664

    Google Scholar 

  45. Investigators TG (1993) An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 329(10):673–682

    Article  Google Scholar 

  46. Levine GN, Bates ER, Bittl JA et al (2016) 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134(10):e123–e155

    Article  PubMed  Google Scholar 

  47. Hahn J-Y, Song YB, Oh J-H et al (2019) Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention: the SMART-CHOICE randomized clinical trial. JAMA 321(24):2428–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mehran R, Baber U, Sharma SK et al (2019) Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med 381(21):2032–2042

    Article  CAS  PubMed  Google Scholar 

  49. Zocca P, Kok MM, van der Heijden LC et al (2018) High bleeding risk patients treated with very thin-strut biodegradable polymer or thin-strut durable polymer drug-eluting stents in the BIO-RESORT trial. Cardiovasc Drugs Ther 32(6):567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kufner S, Joner M, Thannheimer A et al (2019) Ten-year clinical outcomes from a trial of three limus-eluting stents with different Polymer coatings in patients with coronary artery disease. Circulation 139(3):325–333

    Article  PubMed  Google Scholar 

  51. Kim H-S, Kang J, Hwang D et al (2021) Durable polymer versus biodegradable polymer drug-eluting stents after percutaneous coronary intervention in patients with acute coronary syndrome. Circulation 143(11):1081–1091

    Article  CAS  PubMed  Google Scholar 

  52. Kolandaivelu K, Swaminathan R, Gibson WJ et al (2011) Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123(13):1400–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kounis NG, Koniari I, Roumeliotis A et al (2017) Thrombotic responses to coronary stents, bioresorbable scaffolds and the Kounis hypersensitivity-associated acute thrombotic syndrome. J Thorac Dis 9(4):1155–1164

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rao SV, O’Grady K, Pieper KS et al (2006) A comparison of the clinical impact of bleeding measured by two different classifications among patients with acute coronary syndromes. J Am Coll Cardiol 47(4):809–816

    Article  PubMed  Google Scholar 

  55. Whelan DM, van der Giessen WJ, Krabbendam SC et al (2000) Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart 83(3):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giessen WJvd, Lincoff AM, Schwartz RS et al (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94(7):1690–1697

    Article  PubMed  Google Scholar 

  57. Palmerini T, Biondi-Zoccai G, Della Riva D et al (2014) Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 63(4):299–307

    Article  CAS  PubMed  Google Scholar 

  58. Bangalore S, Toklu B, Amoroso N et al (2013) Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ 347:f6625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Giacoppo D, Matsuda Y, Fovino LN et al (2020) Short dual antiplatelet therapy followed by P2Y12 inhibitor monotherapy vs. prolonged dual antiplatelet therapy after percutaneous coronary intervention with second-generation drug-eluting stents: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J 42(4):308–319

    Article  CAS  Google Scholar 

  60. Benenati S, Galli M, De Marzo V et al (2020) Very short vs. long dual antiplatelet therapy after second generation drug-eluting stents in 35 785 patients undergoing percutaneous coronary interventions: a meta-analysis of randomized controlled trials. Eur Heart J 7(2):86–93

    Google Scholar 

  61. Benenati S, Crimi G, Canale C et al (2020) Duration of dual antiplatelet therapy and subsequent monotherapy type in patients undergoing drug-eluting stent implantation: a network meta-analysis. Eur Heart J. https://doi.org/10.1093/ehjcvp/pvaa127

    Article  Google Scholar 

  62. Bianco M, Careggio A, Destefanis P et al (2020) P2Y12 inhibitors monotherapy after short course of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention: a meta-analysis of randomized clinical trials including 29 089 patients. Eur Heart J 7(3):196–205

    Google Scholar 

  63. Windecker S, Haude M, Neumann F-J et al (2015) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent. Circulation 8(2):e001441

    CAS  PubMed  Google Scholar 

Download references

Funding

None reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. S. Chew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, B., Goh, R.S.J., Kong, G. et al. Comparison of biodegradable and newer generation durable polymer drug-eluting stents with short-term dual antiplatelet therapy: a systematic review and Bayesian network meta-analysis of randomized trials comprising of 43,875 patients. J Thromb Thrombolysis 53, 671–682 (2022). https://doi.org/10.1007/s11239-021-02628-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02628-8

Keywords

Navigation