Skip to main content

Advertisement

Log in

Endothelial progenitor cells overexpressing platelet derived growth factor-D facilitate deep vein thrombosis resolution

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

To assess the therapeutic efficacy of PDGF-D-overexpressing endothelial progenitor cells (EPCs) in deep vein thrombosis. Inferior vena cava thrombosis was induced in female Sprague Dawley (SD) rats. Animals were injected via the distal vena cava with EPCs overexpressing PDGF-D after transfection with a lentiviral vector containing the PDGF-D gene. The effect on thrombosis in animals who received EPCs was evaluated using MSB staining, immunohistochemistry, immunofluorescence, and venography; the steady-state mRNA and protein levels of PDGF-D and its receptor (PDGF-Rβ) were determined by RT-PCR and Western blotting, respectively; and the PDGF-D-induced mobilization of circulating EPCs was estimated by flow cytology. Compared with controls, injection of EPCs overexpressing PDGF-D was associated with increased thrombosis resolution; recanalization; PDGF-D and PDGF-Rβ expression; induction of monocyte homing; and mobilization of EPCs to the venous circulation. In a rat model, transplantation of PDGF-D-overexpressing EPCs facilitated the resolution of deep vein thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated/analyzed during the current study are available.

References

  1. Heijboer H, Jongbloets LM, Büller HR, Lensing AW, ten Cate JW (1992) Clinical utility of real-time compression ultrasonography for diagnostic management of patients with recurrent venous thrombosis. Acta Radiol 33:297–300

    Article  CAS  Google Scholar 

  2. Prandoni P, Cogo A, Bernardi E, Villalta S, Polistena P, Simioni P et al (1993) A simple ultrasound approach for detection of recurrent proximal-vein thrombosis. Circulation 88:1730–1735. https://doi.org/10.1161/01.cir.88.4.1730

    Article  CAS  PubMed  Google Scholar 

  3. Meissner MH, Manzo RA, Bergelin RO, Strandness DE (1994) Venous diameter and compliance after deep venous thrombosis. Thromb Haemost 72:372–376. https://pubmed.ncbi.nlm.nih.gov/7855786/

  4. Arcelus JI, Caprini JA, Hoffman KN, Fink N, Size GP, Fareed J et al (1996) Laboratory assays and duplex scanning outcomes after symptomatic deep vein thrombosis: preliminary results. J Vasc Surg 23:616–621. https://doi.org/10.1016/s0741-5214(96)80041-3

    Article  CAS  PubMed  Google Scholar 

  5. Killewich LA, Macko RF, Cox K, Franklin DR, Benjamin ME, Lilly MP et al (1997) Regression of proximal deep venous thrombosis is associated with fibrinolytic enhancement. J Vasc Surg 26:861–868. https://doi.org/10.1016/s0741-5214(97)70101-0

    Article  CAS  PubMed  Google Scholar 

  6. Kahn SR, Ginsberg JS (2004) Relationship between deep venous thrombosis and the postthrombotic syndrome. Arch Intern Med 164:17–26. https://doi.org/10.1001/archinte.164.1.17

    Article  PubMed  Google Scholar 

  7. Henke PK, Varma MR, Moaveni DK, Dewyer NA, Moore AJ, Lynch EM, et al (2007) Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb Haemost. 98:1045–1055. https://pubmed.ncbi.nlm.nih.gov/18000610/

  8. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ (2008) Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133:454S-545S. https://doi.org/10.1378/chest.08-0658

    Article  CAS  PubMed  Google Scholar 

  9. Sevitt S (1973) The vascularisation of deep-vein thrombi and their fibrous residue: a post mortem angio-graphic study. J Pathol 111:1–11. https://doi.org/10.1002/path.1711110102

    Article  CAS  PubMed  Google Scholar 

  10. Modarai B, Burnand KG, Humphries J, Waltham M, Smith A (2005) The role of neovascularisation in the resolution of venous thrombus. Thromb Haemost. 93:801–809. https://doi.org/10.1160/THo4-09-0596

    Article  CAS  PubMed  Google Scholar 

  11. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353. https://doi.org/10.1161/01.res.0000137877.89448.78

    Article  CAS  PubMed  Google Scholar 

  12. Meng Q, Wang W, Yu X, Li W, Kong L, Qian A et al (2015) Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J Cell Biochem 116:1613–1623. https://doi.org/10.1002/jcb.25115

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Li C, Li W, Kong L, Qian A, Hu N et al (2014) MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res 133:590–598. https://doi.org/10.1016/j.thromres.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  14. Ott I, Keller U, Knoedler M, Götze KS, Doss K, Fischer P et al (2005) Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. Faseb J 19:992–994. https://doi.org/10.1096/fj.04-3219fje

    Article  CAS  PubMed  Google Scholar 

  15. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98. https://doi.org/10.1161/hc0102.101442

    Article  PubMed  Google Scholar 

  16. Li W-D, Li X-Q (2016) Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vasc Pharmacol 83:10–16. https://doi.org/10.1016/j.vph.2015.07.007

    Article  CAS  Google Scholar 

  17. Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293. https://doi.org/10.1161/01.ATV.0000114236.77009.06

    Article  CAS  Google Scholar 

  18. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169. https://doi.org/10.1161/01.cir.0000058702.69484.a0

    Article  PubMed  Google Scholar 

  19. Henke PK, Wakefield TW, Kadell AM, Linn MJ, Varma MR, Sarkar M et al (2001) Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J Surg Res 99:84–91. https://doi.org/10.1006/jsre.2001.6122

    Article  CAS  PubMed  Google Scholar 

  20. Brindle NPJ, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023. https://doi.org/10.1161/01.RES.0000218275.54089.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E (2005) Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol 204:948–955. https://doi.org/10.1002/jcp.20362

    Article  CAS  PubMed  Google Scholar 

  22. Wakefield TW, Linn MJ, Henke PK, Kadell AM, Wilke CA, Wrobleski SK et al (1999) Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg 30:885–892. https://doi.org/10.1016/s0741-5214(99)70013-3

    Article  CAS  PubMed  Google Scholar 

  23. Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B et al (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation 107:869–875

    Article  CAS  Google Scholar 

  24. Modarai B, Burnand KG, Sawyer B, Smith A (2005) Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation 111:2645–2653. https://doi.org/10.1161/CIRCULATIONAHA.104.492678

    Article  CAS  PubMed  Google Scholar 

  25. Cao Y (2013) Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med 19:460–473. https://doi.org/10.1016/j.molmed.2013.05.002. (https://doi.org/10.1161/01.cir.0000050149.22928.39)

    Article  CAS  PubMed  Google Scholar 

  26. Demoulin J-B, Essaghir A (2014) PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 25:273–283. https://doi.org/10.1016/j.cytogfr.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Heldin C-H, Lennartsson J (2013) Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb Perspect Biol 5:a009100–a009100. https://doi.org/10.1101/cshperspect.a009100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. https://doi.org/10.1101/gad.1653708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3:512–516. https://doi.org/10.1038/35074588

    Article  CAS  PubMed  Google Scholar 

  30. Ye Y, Li X, Zhang Y, Shen Z, Yang J (2016) Androgen modulates functions of endothelial progenitor cells through activated Egr1 signaling. Stem Cells Int 2016:7057894–7057916. https://doi.org/10.1155/2016/7057894

    Article  CAS  PubMed  Google Scholar 

  31. Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG (1999) Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 30:894–899. https://doi.org/10.1016/s0741-5214(99)70014-5

    Article  CAS  PubMed  Google Scholar 

  32. Clark RA (1993) Biology of dermal wound repair. Dermatol Clin 11:647–666

    Article  CAS  Google Scholar 

  33. McGuinness CL, Humphries J, Waltham M, Burnand KG, Collins M, Smith A (2001) Recruitment of labelled monocytes by experimental venous thrombi. Thromb Haemost 85:1018–1024

    Article  CAS  Google Scholar 

  34. Soo KS, Northeast AD, Happerfield LC, Burnand KG, Bobrow LG (1996) Tissue plasminogen activator production by monocytes in venous thrombolysis. J Pathol 178:190–194. https://doi.org/10.1002/(SICI)1096-9896(199602)178:2%3c190::AID-PATH454%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  35. Knighton DR, Fiegel VD (1989) Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 140:1108–1111. https://doi.org/10.1164/ajrccm/140.4.1108

    Article  CAS  PubMed  Google Scholar 

  36. Nehls V, Herrmann R (1996) The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 51:347–364. https://doi.org/10.1006/mvre.1996.0032

    Article  CAS  PubMed  Google Scholar 

  37. Lim BCB, Ariëns RAS, Carter AM, Weisel JW, Grant PJ (2003) Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 361:1424–1431. https://doi.org/10.1016/S0140-6736(03)13135-2

    Article  CAS  PubMed  Google Scholar 

  38. Majno G, Joris I (1996) Cells, tissues, and disease. Principles of general pathology. Blackwell Science, Hoboken

    Google Scholar 

  39. Cox JS (1963) The maturation and canalization of thrombi. Surg Gynecol Obstet 116:593–599

    CAS  PubMed  Google Scholar 

  40. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228. https://doi.org/10.1161/01.res.85.3.221

    Article  CAS  Google Scholar 

  41. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA (2003) Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther. 10:647–656. https://doi.org/10.1038/sj.gt.3301883

    Article  CAS  PubMed  Google Scholar 

  42. Meng Q, Li X, Yu X, Lei F, Jiang K, Li C (2011) Transplantation of ex vivo expanded bone marrow-derived endothelial progenitor cells enhances chronic venous thrombus resolution and recanalization. Clin Appl Thromb Hemost 17:E196-201. https://doi.org/10.1177/1076029610397180

    Article  PubMed  Google Scholar 

  43. Iwaguro H, Yamaguchi J-I, Kalka C, Murasawa S, Masuda H, Hayashi S-I et al (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738. https://doi.org/10.1161/hc0602.103673

    Article  CAS  PubMed  Google Scholar 

  44. Kong L, Hu N, Du X, Wang W, Chen H, Li W et al (2016) Upregulation of miR-483–3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med. https://doi.org/10.1186/s12967-016-0775-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to the reviewers for their helpful comments on this article.

Funding

This work was supported by the Grant from the National Natural Science Foundation of China (81400348) and the Kuanren Talents Program of the second affiliated hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

BT designed the experiments and wrote the manuscript. HZ performed most experiments and analyzed data. HL was involved in analyzing the data. YC helped in animal experiments. JS analyzed the histology and histopathology and interpreted data. Jian Fu designed and supervised all experiments and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Tang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Ethical approval

The ethics committee of The Second Affiliated Hospital of Chongqing University (Chongqing, China) provided ethical approval for the experiments involved animals were implemented in accordance with the principles embodied in the National Institutes of Health Guide for the Care and Use of Laboratory. Efforts were made to avoid all unnecessary painful to the animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Luo, H., Tang, B. et al. Endothelial progenitor cells overexpressing platelet derived growth factor-D facilitate deep vein thrombosis resolution. J Thromb Thrombolysis 53, 750–760 (2022). https://doi.org/10.1007/s11239-021-02567-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02567-4

Keywords

Navigation