Skip to main content
Log in

Rationality with preference discovery costs

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

Economic theory assumes that preferences are rational. However, experiments have found small violations of transitivity. This paper develops a model of rationality with preference discovery costs. Introspection is costly. Thus, agents may find it optimal to use less than full effort, even though this raises the risk of making a poor choice. This model could potentially explain the intransitivities observed in the data while retaining rationality and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that even if this belief about the distribution was correct and the agent was aware of this, it would still be impossible to recover the utility function. Knowledge of \(u( {x^{*}( {p,w} )} )-u( {x( {p,w,d} )} )\) does not imply knowledge of u(x).

  2. Exception: picking N on both budget lines.

  3. Even if the consumer did use enough effort to perfectly determine his preferences, consumption could still be modeled as a random variable. It would simply have a degenerate distribution.

References

  • Afriat, S. (1972). Efficiency estimates of production functions. International Economic Review, 8, 568–598.

    Article  Google Scholar 

  • Andreoni, J., & Miller, J. (2002). Giving according to GARP: An experimental test of the consistency of preferences for altruism. Econometrica, 70(2), 737–753.

    Article  Google Scholar 

  • Ballinger, T. P., & Wilcox, N. T. (1997). Decisions, error and heterogeneity. The Economic Journal, 107(443), 1090–1105.

    Article  Google Scholar 

  • Battalio, R. C., Kagel, J. H., Winkler, R. C., Fisher, E. B., Basmann, R. L., & Krasner, L. (1973). A test of consumer demand theory using observations of individual consumer purchases. Economic Inquiry, 11(4), 411–428.

    Article  Google Scholar 

  • Braga, J., Humphrey, S. J., & Starmer, C. (2009). Market experience eliminates some anomalies—And creates new ones. European Economic Review, 53(4), 401–416.

    Article  Google Scholar 

  • Bordley, R. F. (1992). An intransitive expectations-based Bayesian variant of prospect theory. Journal of Risk and Uncertainty, 5(2), 127–144.

    Article  Google Scholar 

  • Bröder, A., & Schiffer, S. (2003). Take the best versus simultaneous feature matching: Probabilistic inferences from memory and effects of representation format. Journal of Experimental Psychology: General, 132(2), 277.

    Article  Google Scholar 

  • Camerer, C. F., Hogarth, R. M., Budescu, D. V., & Eckel, C. (1999). The effects of financial incentives in experiments: A review and capital-labor-production framework. In B. Fischhoff & C. F. Manski (Eds.), Elicitation of preferences (pp. 7–48). Berlin: Springer.

    Chapter  Google Scholar 

  • Conlisk, J. (1988). Optimization cost. Journal of Economic Behavior & Organization, 9(3), 213–228.

    Article  Google Scholar 

  • Conlisk, J. (1996). Why bounded rationality? Journal of Economic Literature, 34(2), 669–700.

    Google Scholar 

  • Cox, J. C., & Grether, D. M. (1996). The preference reversal phenomenon: Response mode, markets and incentives. Economic Theory, 7(3), 381–405.

    Article  Google Scholar 

  • DeGroot, M. H. (1983). Decision making with an uncertain utility function. In B. P. Stigum & F. Wenstop (Eds.), Foundations of utility and risk theory with applications (pp. 371–384). Berlin: Springer.

    Chapter  Google Scholar 

  • Evans, G., & Ramey, G. (1998). Calculation, adaptation and rational expectations. Macroeconomic Dynamics, 2(02), 156–182.

    Google Scholar 

  • Evans, G., & Ramey, G. (1992). Expectation calculation and macroeconomic dynamics. American Economic Review, 82(1), 207–224.

    Google Scholar 

  • Harbaugh, W. T., Krause, K., & Berry, T. R. (2001). GARP for kids: On the development of rational choice behavior. American Economic Review, American Economic Association, 91(5), 1539–1545.

    Article  Google Scholar 

  • Hogarth, R. M., & Karelaia, N. (2005). Simple models for multiattribute choice with many alternatives: When it does and does not pay to face trade-offs with binary attributes. Management Science, 51(12), 1860–1872.

    Article  Google Scholar 

  • Jacobs, M. (2016). Accounting for changing tastes: Approaches to explaining unstable individual preferences. Review of Economics, 67(2), 121–183.

    Article  Google Scholar 

  • Jun, T. (2004). A survey on the bandit problem with switching costs. de Economist, 152(4), 513–541.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Loomes, G., Starmer, C., & Sugden, R. (2003). Do anomalies disappear in repeated markets? The Economic Journal, 113(486), C153–C166.

    Article  Google Scholar 

  • Plott, C. R. (1996). Rational individual behavior in markets and social choice processes: The discovered preference hypothesis. In K. Arrow, E. Colombatto, M. Perlman, & C. Schmidt (Eds.), The foundations of economic behaviour (pp. 225–250). London: McMillan.

    Google Scholar 

  • Smith, V. L., & Walker, J. M. (1993). Monetary rewards and decision cost in experimental economics. Economic Inquiry, 31(2), 245–261.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. The Journal of Business, 59(4), S251–S278.

    Article  Google Scholar 

  • Varian, H. R. (1991). Goodness-of-fit for revealed preference tests. Ann Arbor: Department of Economics, University of Michigan.

    Google Scholar 

  • Viscusi, W. K. (1989). Prospective reference theory: Toward an explanation of the paradoxes. Journal of Risk and Uncertainty, 2(3), 235–263.

    Article  Google Scholar 

Download references

Acknowledgements

William Harbaugh, James Andreoni, George Evans, Bruce McGough, and two anonymous referees provided many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Wilson.

Appendix: Convergence of effort

Appendix: Convergence of effort

Let \(N_\mathrm{s}\) be the number of signals the agent receives. Only a few harmless assumptions are required to show convergence: as \(N_\mathrm{s}\) approaches infinity, \(D( {\theta ,p,w} )\) approaches \(D( {\theta ^{*},p,w} )\).

Assumption 1

\(\theta ^{*}\) is unique and dwells in a compact subset of \(R^{n}\).

Assumption 2

For all \(p,w,d\ge 0\), the agent’s initial beliefs \(f( {y,p,w,d,\theta } )>0\) when \(\theta =\theta ^{*}\).

Assumption 3

There exists a valid instrumental variable for d that is in the agent’s information set.

Before going through the mathematical proof, some intuition is in order. An alternative way to update beliefs is by using nonlinear least squares with instrumental variables (NLLS-IV). We instrument for d because it is endogenous; the agent selects d optimally given his beliefs \(\theta \). So if there is an instrument for d, the agent can obtain consistent estimates for \(\theta \) using NLLS-IV. Thus, \({\lim }_{N_\mathrm{s} \rightarrow \infty } \theta _{\mathrm{NLLS}\_\mathrm{IV}} =\theta ^{*}\). This implies that \({\lim }_{N_\mathrm{s} \rightarrow \infty } D( {\theta _{\mathrm{NLLS}\_\mathrm{IV}} ,p,w} )=D(\theta ^{*},p,w)\).

By definition of optimality, the optimal beliefs are no worse than any other beliefs. Therefore, if effort under the non-optimal beliefs \(\theta _{\mathrm{NLLS}\_\mathrm{IV}}\) converge, then effort under the optimal beliefs will also converge. Now for the math.

Let \(\hat{\theta }\) denote the optimal beliefs. The beliefs under NLLS-IV are \(\theta _\mathrm{NL}\). The information set I augmented with \(N_\mathrm{s}\) signals is \(I_{N_\mathrm{s}}\). Since \(\theta ^{*}\) is the true \(\theta \), if you knew \(\theta ^{*}\), then other beliefs \(\theta \) would be irrelevant for assessing the expected value of the utility gap. Hence, \(\int \nolimits _0^\infty y \,f(y|p,w,d, \theta ^{*},\theta _\mathrm{NL} ,\hat{\theta } ,I_{N_\mathrm{s} } ) \mathrm{d}y=\int \nolimits _0^\infty y f(y|p,w,d, \theta ^{*}) \mathrm{d}y\). First, consider the problem faced by an agent who knows \(\theta ^{*}\).

$$\begin{aligned} {\mathop {\max }\limits _{\{ d \}}}\, E[u( {x( {p,w,d} )} )|p,w,d,\theta ^{*},\theta _\mathrm{NL} ,\hat{\theta }, I_{N_\mathrm{s} } ]-v( d ) \end{aligned}$$
(35)

This is equivalent to the following.

$$\begin{aligned} {\mathop {\min }\limits _{\{ d \}}}\, E[ {y( {p,w,d} )|p,w,d,\theta ^{*},\theta _\mathrm{NL} , \hat{\theta }, I_{N_\mathrm{s} } } ]+v( d ) \end{aligned}$$
(36)

Maximizing utility is equivalent to minimizing the utility gap plus the disutility of effort. The problem above is the same as

$$\begin{aligned} {\mathop {\min }\limits _{\{ d \}}}\,E[ {y( {p,w,d} )|p,w,d,\theta ^{*}} ]+v( d ). \end{aligned}$$
(37)

The solution is \(d=D(\theta ^{*},p,w)\). Since \(D(\theta ^{*},p,w)\) is optimal given pw,  and \(\theta ^{*}\), we know that for any \(\theta _0\),

$$\begin{aligned}&E[ {y( {p,w,D(\theta ^{*},p,w)} )|p,w,d,\theta ^{*}} ]+v( {D(\theta ^{*},p,w)} )\nonumber \\&\quad \le E[ {y( {p,w,D( {\theta _0 ,p,w} )} )|p,w,d,\theta ^{*}} ]+v( {D( {\theta _0 ,p,w} )} ). \end{aligned}$$
(38)

One such \(\theta _0\) is \(\theta _\mathrm{NL}\). Since the NLLS-IV estimator is consistent, \({\lim }_{N_\mathrm{s} \rightarrow \infty } \theta _\mathrm{NL} =\theta ^{*}\). Thus, \({\lim }_{N_\mathrm{s} \rightarrow \infty } D( {\theta _\mathrm{NL} ,p,w} )=D(\theta ^{*},p,w)\) and \({\mathop {\hbox {lim}}\nolimits _{N_\mathrm{s} \rightarrow \infty }} E[ y( {p,w,D( {\theta _\mathrm{NL} ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } ]+v( {D( {\theta _\mathrm{NL} ,p,w} )} )=E[ {y( {p,w,D( {\theta ^{*},p,w} )} )|p,w,d,\theta ^{*}} ]+v( {D( {\theta ^{*},p,w} )} )\). Another possible \(\theta _0 \) is the optimal beliefs \(\hat{\theta }\). Therefore, we know

$$\begin{aligned}&{\mathop {\lim }\limits _{N_\mathrm{s} \rightarrow \infty }}\, E[ {y( {p,w,D( {\theta _\mathrm{NL} ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\theta _\mathrm{NL} ,p,w} )} )\nonumber \\&\quad \le {\mathop {\lim }\limits _{N_\mathrm{s} \rightarrow \infty }} E[ {y( {p,w,D( {\hat{\theta },p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\hat{\theta },p,w} )} ). \end{aligned}$$
(39)

However, because \(\hat{\theta }\) is the optimal beliefs, we know that for all \(N_\mathrm{s}\),

$$\begin{aligned}&E[ {y( {p,w,D( {\theta _\mathrm{NL} ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\theta _\mathrm{NL} ,p,w} )} )\nonumber \\&\quad \ge E[ {y( {p,w,D( {\hat{\theta },p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\hat{\theta },p,w} )} ). \end{aligned}$$
(40)

Together, the two equations above imply

$$\begin{aligned}&{\mathop {\hbox {lim}}\limits _{N_\mathrm{s} \rightarrow \infty }}\, E[ {y( {p,w,D( {\theta _\mathrm{NL} ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\theta _\mathrm{NL} ,p,w} )} )\nonumber \\&\quad ={\mathop {\hbox {lim}}\limits _{N_\mathrm{s} \rightarrow \infty }} E[ {y( {p,w,D( {\hat{\theta } ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\hat{\theta },p,w} )} ). \end{aligned}$$
(41)

Since \({\mathop {\hbox {lim}}\nolimits _{N_\mathrm{s} \rightarrow \infty }} E[ {y( {p,w,D( {\theta _\mathrm{NL} ,p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\theta _\mathrm{NL} ,p,w} )} )=E[ {y( {p,w,D( {\theta ^{*},p,w} )} )|p,w,d,\theta ^{*}} ]+v( {D( {\theta ^{*},p,w} )} )\),

$$\begin{aligned}&{\mathop {\lim }\limits _{N_\mathrm{s} \rightarrow \infty }}\, E[ {y( {p,w,D( {\hat{\theta },p,w} )} )|p,w,d,I_{N_\mathrm{s} } } ]+v( {D( {\hat{\theta } ,p,w} )} )\nonumber \\&\quad ={\mathop {\lim }\limits _{N_\mathrm{s} \rightarrow \infty }} E[ {y( {p,w,D( {\hat{\theta } ,p,w} )} )|p,w,d,\theta ^{*}} ]+v( {D( {\hat{\theta },p,w} )} )\nonumber \\&\quad =E[ {y( {p,w,D( {\theta ^{*},p,w} )} )|p,w,d,\theta ^{*}} ]+v( {D( {\theta ^{*},p,w} )} ). \end{aligned}$$
(42)

Therefore, \({\mathop {\hbox {lim}}\nolimits _{N_\mathrm{s} \rightarrow \infty }} D( {\hat{\theta },p,w} ) \epsilon D( {\theta ^{*},p,w} )\). Note that there is no requirement that \(D( {\theta ^{*},p,w} )\) has to be a function; more generally, it can be a nonempty-valued correspondence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, M.S. Rationality with preference discovery costs. Theory Decis 85, 233–251 (2018). https://doi.org/10.1007/s11238-017-9628-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-017-9628-6

Keywords

Navigation