Skip to main content
Log in

Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The latest research on photocatalytic systems based on graphite-like carbon nitride (g-C3N4) for decontamination of air pollutants, in particular, volatile organic compounds, such as alkanes, alkenes, aromatic hydrocarbons, alcohols, carbonyl compounds, and other substances is considered. The photocatalytic properties of g-C3N4, modified by organic and inorganic compounds doped with metal ions, as well as binary and ternary composites based on g-C3N4 with the participation of metals, their oxides, metalates, phosphates, and sulfides, are discussed. The prospects of further research in the field of photocatalysis are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. Gonzalez-Martin, N. J. R. Kraakman, C. Perez, et al., Chemospere, 262, 128376 (2021), https://doi.org/10.1016/j.chemosphere.2020.128376.

    Article  CAS  Google Scholar 

  2. A. I. Kryukov, A. L. Stroyuk, S. Ya. Kuchmiy, and V. D. Pokhodenko, Nanophotocatalysis, Akademperiodika, Kyiv (2013).

    Google Scholar 

  3. J. C. Colmenares and Y.-J. Xu (Eds.), Heterogeneous Photocatalysis . From Fundamentals to Green Applications, Springer (2016).

    Google Scholar 

  4. A. Vorontsov, Photocatalysis: Applications, D. D. Dionysiou, G. L. Puma, J. Ye, et al. (Eds.), RSC Publ., (2016), pp. 174-203.

  5. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, No. 1, 69-96 (1995), https://doi.org/10.1021/cr00033a004.

    Article  CAS  Google Scholar 

  6. J. Zhao and X. D. Yang, Build. Environ., 38, No. 5, 645-654 (2003), doi:https://doi.org/10.1016/S0360-1323(02)00212-3.

    Article  Google Scholar 

  7. S. Kwon, M. Fan, A. T. Cooper, and H. Yang, Environ. Sci. Technol., 38, No. 3, 197-226 (2008), https://doi.org/10.1080/10643380701628933.

    Article  CAS  Google Scholar 

  8. M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B, 125, 331-349 (2012), https://doi.org/10.1016/j.apcatb.2012.05.036.

    Article  CAS  Google Scholar 

  9. V. Augugliaro, M. Bellardita, V. Loddo, et al., J. Photochem. Photobiol. C, 13, 224-245 (2012), https://doi.org/10.1016/j.jphotochemrev.2012.04.003.

    Article  CAS  Google Scholar 

  10. B. Hauchecorne and S. Lenaerts, J. Photochem. Photobiol. C, 14, 72-85 (2013), https://doi.org/10.1016/j.jphotochemrev.2012.09.003.

    Article  CAS  Google Scholar 

  11. S. W. Verbruggen, J. Photochem. Photobiol. C, 24, 64-82 (2015), https://doi.org/10.1016/j.jphotochemrev.2015.07.001.

    Article  CAS  Google Scholar 

  12. A. H. Mamaghani, F. Haghighat, and C.-S. Lee, Appl. Catal. B, 203, 247-269 (2017), https://doi.org/10.1016/j.apcatb.2016.10.037.

    Article  CAS  Google Scholar 

  13. P. Mazierski, A. Mikolajczyk, B. Bajorowicz, et al., Appl. Catal. B, 233, 301-317 (2018), https://doi.org/10.1016/j.apcatb.2018.04.019.

    Article  CAS  Google Scholar 

  14. Z. Shayegan, C.-S. Lee, and F. Haghighat, Chem. Eng. J., 334, 2408-2439 (2018).

    Article  CAS  Google Scholar 

  15. C. H. A. Tsang, K. Li, Y. Zeng, et al., Environ. Int., 125, 200-228 (2019), doi:https://doi.org/10.1016/j.envint.2019.01.015.

    Article  CAS  PubMed  Google Scholar 

  16. S.-I. In, P. C. K. Vesborg, B. L. Abrams, et al., J. Photochem. Photobiol. A, 222, No. 1, 258-262 (2011), https://doi.org/10.1016/jjphotochem.2011.06.005.

    Article  CAS  Google Scholar 

  17. T. Baran and W. Macyk, J. Photochem. Photobiol. A, 241, 8-12 (2012), https://doi.org/10.1016/jj.jphotochem.2012.05.008.

    Article  CAS  Google Scholar 

  18. H. Park, Y. Park, W. Kim, and W. Choi, J. Photochem. Photobiol. C, 15, 1-20 (2013), dx. https://doi.org/10.1016/j.jphotochemrev.2012.10.001.

    Article  CAS  Google Scholar 

  19. R. Zhou, J. Wu, J. Zhang, et al., Appl. Catal. B, 204, 465-474 (2017), https://doi.org/10.1016/j.apcatb.2016.11.013.

    Article  CAS  Google Scholar 

  20. S. Kitano, M. Sadakiyo, K. Kato, et al., Appl. Catal. B, 205, 340-346 (2017), https://doi.org/10.1016/j.apcatb.2016.12.047.

    Article  CAS  Google Scholar 

  21. M. F. Galvez-Lopez, M. J. Munoz-Batista, C. G. Alvarado-Beltran, et al., Appl. Catal. B, 228, 130-141 (2018), https://doi.org/10.1016/j.apcatb.2018.01.075.

    Article  CAS  Google Scholar 

  22. A. Sengele, D. Robert, N. Keller, et al., Appl. Catal. B, 245, 279-289 (2019), https://doi.org/10.1016/j.apcatb.2018.12.071.

    Article  CAS  Google Scholar 

  23. E. A. Kozlova, N. S. Kozhevnikova, S. V. Cherepanova, et al., J. Photochem. Photobiol. A, 250, 103-109 (2012), https://doi.org/10.1016/j.jphotochem.2012.09.014.

    Article  CAS  Google Scholar 

  24. P. A. Kolinko, T. N. Filippov, D. V. Kozlov, and V. N. Parmon, J. Photochem. Photobiol. A, 250, 72-77 (2012), https://doi.org/10.1016/j.jphotochem.2012.09.015.

    Article  CAS  Google Scholar 

  25. L. Lan, Y. Li, M. Zeng, et al., Appl. Catal. B, 203, 494-504 (2017), https://doi.org/10.1016/j.apcatb.2016.10.047.

    Article  CAS  Google Scholar 

  26. C. Feng, M. Sun, Y. Wang, et al., Appl. Catal. B, 219, 705-714 (2017), https://doi.org/10.1016/j.apcatb.2017.07.081.

    Article  CAS  Google Scholar 

  27. N. Lv, Y. Li, Z. Huang, et al., Appl. Catal. B, 246, 303-311 (2019), https://doi.org/10.1016/j.apcatb.2019.01.068.

    Article  CAS  Google Scholar 

  28. T. Iihoshi, T. Ohwaki, J. J. M. Vequizo, and A. Yamakata, Appl. Catal. B, 248, 249-254 (2019), https://doi.org/10.1016/j.apcatb.2019.01.046.

    Article  CAS  Google Scholar 

  29. Y. Wang, C. Yang, A. Chen, et al., Appl. Catal. B, 251, 57-65 (2019), https://doi.org/10.1016/j.apcatb.2019.03.056.

    Article  CAS  Google Scholar 

  30. A. Truppi, F. Petronella, T. Placido, et al., Catalysts, 7, No. 4, 100 (2017), https://doi.org/10.3390/catal7040100.

    Article  CAS  Google Scholar 

  31. Y. Huang, S. Ho, Y. Lu, et al., Molecules, 21, No. 1, 56 (2016), doi: https://doi.org/10.3390/molecules21010056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Nishikawa, S. Hiura, Y. Mitani, and Y. Nosaka, J. Photochem. Photobiol. A, 262, 52-56 (2013), https://doi.org/10.1016/j.jphotochem.2013.04.018.

    Article  CAS  Google Scholar 

  33. M. N. P. Weerasinghe and K. J. Klabunde, J. Photochem. Photobiol. A, 254, 62-70 (2013), https://doi.org/10.1016/j.jphotochem.2013.01.002.

    Article  CAS  Google Scholar 

  34. B. Bajorowicz, J. Nadolna, W. Lisowski, et al., Appl. Catal. B, 203, 452-464 (2017), https://doi.org/10.1016/j.apcatb.2016.10.027.

    Article  CAS  Google Scholar 

  35. O. Chen, Z. He, G. Li, et al., Appl. Catal. B, 209, 146-154 (2017), https://doi.org/10.1016/j.apcatb.2017.02.066.

    Article  CAS  Google Scholar 

  36. L. Zhong, J. J. Brancho, S. Batterman, et al., Appl. Catal. B, 216, 122-132 (2017), https://doi.org/10.1016/j.apcatb.2017.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. X. Xiao, M. Lu, J. Nan, et al., Appl. Catal. B, 218, 398-408 (2017), https://doi.org/10.1016/j.apcatb.2017.06.074.

    Article  CAS  Google Scholar 

  38. H. Zhou, Z. Wen, and J. Liu, et al., Appl. Catal. B, 242, 76-84 (2019), https://doi.org/10.1016/j.apcatb.2018.09.090.

    Article  CAS  Google Scholar 

  39. S. Wang, Z. Li, Y. Guan, et al., Appl. Catal. B, 245, 220-226 (2019), https://doi.org/10.1016/j.apcatb.2018.12.067.

    Article  CAS  Google Scholar 

  40. H. Wang, S. Chen, Z. Wang, et al., Appl. Catal. B, 254, 339-350 (2019), https://doi.org/10.1016/j.apcatb.2019.05.018.

    Article  CAS  Google Scholar 

  41. S. B. Rawal, H. J. Kang, D.-I. Won, and W. I. Lee, Appl. Catal. B, 256, 117856 (2019), https://doi.org/10.1016/j.apcatb.2017.117856.

    Article  CAS  Google Scholar 

  42. X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater., 8, No. 1, 76-80 (2009), https://doi.org/10.1038/nmat2317.

    Article  CAS  PubMed  Google Scholar 

  43. K. Maeda, X. Wang, Y. Nishihara, et al., J. Phys. Chem. C, 113, No. 12, 4940-4947 (2009), https://doi.org/10.1021/jp809119m.

    Article  CAS  Google Scholar 

  44. X. Chen, Y. S. Jun, K. Takanabe, et al., Chem. Mater., 21, No. 18, 4093-4095 (2009), https://doi.org/10.1021/cm902130z.

    Article  CAS  Google Scholar 

  45. X. Wang, K. Maeda, X. Chen, et al., J. Am. Chem. Soc., 131, No. 5, 1680-1681 (2009), https://doi.org/10.1021/ja809307s.

    Article  CAS  PubMed  Google Scholar 

  46. J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surf. Sci., 391, 72-123 (2017), https://doi.org/10.1016/j.apsusc.2016.07.030.

    Article  CAS  Google Scholar 

  47. Y. Kang, Y. Yang, L.-C. Yin, et al., Adv. Mater., 27, No. 31, 4572-4577 (2015), https://doi.org/10.1002/adma.201501939.

    Article  CAS  PubMed  Google Scholar 

  48. O. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Theor. Exp. Chem., 54, No. 1, 1-35 (2018).

    Article  CAS  Google Scholar 

  49. X. Wang, S. Blechert, and M. Antonietti, ACS Catal., 2, No. 8, 1596-1606 (2012), https://doi.org/10.1021/cs300240x.

    Article  CAS  Google Scholar 

  50. D. Huang, X. Yan, M. Yan, et al., ACS Appl. Mater. Interfaces, 10, No. 25, 21035-21055 (2018), https://doi.org/10.1021/acsami.8b03620.

    Article  CAS  PubMed  Google Scholar 

  51. W. Iqbal, B. Yang, X. Zhao, et al., Catal. Sci. Technol., 8, No. 18, 4576-4599. https://doi.org/10.1039/C8CY01061G.

  52. Z. Wang, X. Hu, G. Zou, et al., Sustain. Energy Fuels, 3, No. 3, 611-655 (2019), https://doi.org/10.1039/C8SE00629F.

    Article  CAS  Google Scholar 

  53. L. Lin, Z. Yu, and X. Wang, Angew. Chem. Int. Ed., 58, No. 19, 6164-6175 (2019), https://doi.org/10.1002/anie.201809897.

    Article  CAS  Google Scholar 

  54. X. Li, A. F. Masters, and T. Maschmeyer, Chem. Commun., 53, No. 54, 7438-7446 (2017), https://doi.org/10.1039/C7CC02532G.

    Article  CAS  Google Scholar 

  55. P. Kumar, R. Boukherroub, and K. Shankar, J. Mater. Chem. A, 6, No. 27, 12876-12931 (2018), https://doi.org/10.1039/C8TA02061B.

    Article  CAS  Google Scholar 

  56. M. Volokh, G. Peng, L. Barrio, and M. Shalom, Angew. Chem. Int. Ed., 58, No. 19, 6138-6151 (2019), https://doi.org/10.1002/anie.201806514.

    Article  CAS  Google Scholar 

  57. Y. Zheng, L. Lin, B. Wang, and X. Wang, Angew. Chem. Int. Ed., 54, No. 44, 12868-12884 (2015), https://doi.org/10.1002/anie.201501788.

    Article  CAS  Google Scholar 

  58. C. Wang, Z. Sun, Y. Zheng, and Y. H. Hu, J. Mater. Chem. A, 7, No. 3, 865-887 (2019, doi: https://doi.org/10.1039/c8ta09865d.

    Article  CAS  Google Scholar 

  59. O. L. Stroyuk and S. Ya. Kuchmiy, Theor. Exp. Chem., 53, No. 6, 359-386 (2018), doi:https://doi.org/10.1007/s11237-018-9535-0.

    Article  CAS  Google Scholar 

  60. M. Shen, L. Zhang, and J. Shi, Nanotechnology, 29, No. 41, 412001 (2018), doi: https://doi.org/10.1088/1361-6528/aad4c8.

    Article  CAS  PubMed  Google Scholar 

  61. Z. Sun, N. Talreja, H. Tao, et al., Angew. Chem. Int. Ed., 57, No. 26, 7610-7627 (2018), https://doi.org/10.1002/anie.201710509.

    Article  CAS  Google Scholar 

  62. Y. Chen, G. Jia, Y. Hu, et al., Sustain. Energy Fuels, 1, No. 9, 1875-1898 (2017), https://doi.org/10.1039/C7SE00344G.

    Article  CAS  Google Scholar 

  63. S. Ya. Kuchmiy and O. L. Stroyuk, Theor. Exp. Chem., 57, No. 2, 85-112 (2021).

    Article  CAS  Google Scholar 

  64. Y. Zheng, Y. Chen, B. Gao, et al., Adv. Funct. Mater., 30, No. 30, 2002021 (2020), https://doi.org/10.1002/adfm.202002021.

    Article  CAS  Google Scholar 

  65. Z. Wang, X. Hu, Z. Liu, et al., ACS Catal., 9, No. 11, 10260-10278 (2019), https://doi.org/10.1021/acscatal.9b03015.

    Article  CAS  Google Scholar 

  66. X. Chen, J.-Y. Li, Z.-R. Tang, and Y.-J. Xu, Catal. Sci. Technol., 10, No. 18, 6098-6110 (2020), https://doi.org/10.1039/D0CY01227K.

    Article  CAS  Google Scholar 

  67. J. Liu, H. Wang, and M. Antonietti, Chem. Soc. Rev., 45, No. 8, 2308-2326 (2016), https://doi.org/10.1039/C5CS00767D.

    Article  CAS  PubMed  Google Scholar 

  68. W.-J. Ong, L. L. Tan, Y. H. Ng, et al., Chem. Rev., 116, No. 12, 7159-7329 (2016), doi: https://doi.org/10.1021/acs.chemrev.6b00075.

    Article  CAS  PubMed  Google Scholar 

  69. S. Cao, J. Low, J. Yu, and M. Jaroniec, Adv. Mater., 27, No. 13, 2150-2176 (2015), https://doi.org/10.1002/adma.201500033.

    Article  CAS  PubMed  Google Scholar 

  70. F. Parrino, M. Bellardita, E. I. Garcia-Lopez, et al., ACS Catal., 8, No. 12, 11191-11225 (2018), doi: https://doi.org/10.1021/acscatal.8b03093.

    Article  CAS  Google Scholar 

  71. Y. Wang, X. Wang, and M. Antonietti, Angew. Chem. Int. Ed., 51, No. 1, 68-89 (2012), https://doi.org/10.1002/anie.201101182.

    Article  CAS  Google Scholar 

  72. J. Chen, J. Cen, X. Xu, and X. Li, Catal. Sci. Technol., 6, No. 2, 349-362 (2016), doi: https://doi.org/10.1039/C5CY01289A.

    Article  CAS  Google Scholar 

  73. A. Savateev, I. Ghosh, B. Konig, and M. Antonietti, Angew. Chem. Int. Ed., 57, No. 49, 15936-15947 (2018), https://doi.org/10.1002/anie.201802472.

    Article  CAS  Google Scholar 

  74. G. Marci, E. I. Garcia-Lopez, and L. Palmisano, Catal. Today, 315, 126-137 (2018), https://doi.org/10.1016/j.cattod.2018.03.038.

    Article  CAS  Google Scholar 

  75. A. Savateev and M. Antonietti, ACS Catal., 8, No. 10, 9790-9808 (2018), doi: https://doi.org/10.1021/acscatal.8b02595.

    Article  CAS  Google Scholar 

  76. A. L. Stroyuk, A. E. Raevskaya, and S. Y. Kuchmy, Theor. Exp. Chem., 55, No. 3, 147-172 (2019).

    Article  CAS  Google Scholar 

  77. J. Fu, J. Yu, C. Jiang, and B. Cheng, Adv. Energy Mater., 8, No. 3, Article 1701503 (2017), https://doi.org/10.1002/aenm.201701503.

  78. Z. Zhao, Y. Sun, and F. Dong, Nanoscale, 7, No. 1, 15-37 (2015), https://doi.org/10.1039/C4NR03008G.

    Article  CAS  PubMed  Google Scholar 

  79. G. Mamba and A. Mishra, Appl. Catal. B, 198, 347-377 (2016), https://doi.org/10.1016/j.apcatb.2016.05.052.

    Article  CAS  Google Scholar 

  80. L. Jiang, X. Yuan, Y. Pan, et al., Appl. Catal. B, 217, 388-406 (2017), https://doi.org/10.1016/j.apcatb.2017.06.003.

    Article  CAS  Google Scholar 

  81. N. T. T. Truc, T.-D. Pham, D. V. D. Thuan, et al., J. Alloys Compd., 798, 12-18 (2019), https://doi.org/10.1016/jjallcom.2019.05.236.

    Article  Google Scholar 

  82. W.-K. Jo and H.-J. Yoo, Ultrason. Sonochem., 42, 517-525 (2018), https://doi.org/10.1016/j.ultsonch.2017.12.019.

    Article  CAS  PubMed  Google Scholar 

  83. X. Chen, X. Huang, and Z. Yi, Chem. Eur. J., 20, No. 52, 17590-17596 (2014), https://doi.org/10.1002/chem.201404284.

    Article  CAS  PubMed  Google Scholar 

  84. J. Li, M. Zhang, Q. Li, and J. Yang, Appl. Surf. Sci. B, 391, 184-193 (2017), https://doi.org/10.1016/j.apsusc.2016.06.145.

    Article  CAS  Google Scholar 

  85. J. Li, M. Zhang, X. Li, et al., Appl. Catal. B, 212, 106-114 (2017), https://doi.org/10.1016/j.apcatb.2017.04.061.

    Article  CAS  Google Scholar 

  86. J. Xue, C. Huang, P. Xu, et al., Appl. Organomet. Chem., 33, No. 7, e4966 (2019), https://doi.org/10.1002/aoc.4966.

    Article  CAS  Google Scholar 

  87. M. Munoz-Batista, A. Kubacka, and M. Fernandez-Garcia, Catal. Sci. Technol., 4, No. 7, 2006-2015 (2014), https://doi.org/10.1039/C4CY00226A.

    Article  CAS  Google Scholar 

  88. M. J. Munoz-Batista, M. Fernandez-Garcia, and A. Kubacka, Appl. Catal. B, 164, 261-270 (2015), https://doi.org/10.1016/j.apcatb.2014.09.037.

    Article  CAS  Google Scholar 

  89. M. J. Munoz-Batista, M. A. Nasalevich, T. J. Savenije, et al., Appl. Catal. B, 176-177, 687-698 (2015), https://doi.org/10.1016/j.apcatb.2015.04.051.

    Article  CAS  Google Scholar 

  90. U. Caudillo-Flores, M. J. Munos-Batista, R. Luque, et al., Chem. Eng. J., 378, 122228 (2019), https://doi.org/10.1016/j.cej.2019.122228.

    Article  CAS  Google Scholar 

  91. C. Zhao, H. Jia, W. Jin, et al., Func.Mater. Lett., 12. No. 6, 1950086 (2019), https://doi.org/10.1142/S1793604719500863.

    Article  CAS  Google Scholar 

  92. D. J. Kim and W.-K. Jo, Chemosphere, 202,184-190 (2018), https://doi.org/10.1016/j.chemosphere.2018.03.089.

    Article  CAS  PubMed  Google Scholar 

  93. J. U. Choi, Y. G. Kim, and W.-K. Jo, Appl. Surf. Sci., 473, 761-769 (2019), https://doi.org/10.1016/j.apsusc.2018.12.237.

    Article  CAS  Google Scholar 

  94. R. Parvari, F. Ghorbani-Shahna, A. Bahrami, et al., J. Photochem. Photobiol. A, 399, 112643 (2020), https://doi.org/10.1016/j.jphotochem.2020.112643.

    Article  CAS  Google Scholar 

  95. R. Parvari, F. Ghorbani-Shahna, A. Bahrami, et al., Catal. Lett., 150, No. 4, 3455-3469 (2020), https://doi.org/10.1007/s10562-020-03236-6.

    Article  CAS  Google Scholar 

  96. M. J. Munoz-Batista, O. Fontelles-Carceller, A. Kubacka, and M. Fernandez-Garcia, Appl. Catal. B, 203, 663-672 (2017), https://doi.org/10.1016/j.apcatb.2016.10.044.

    Article  CAS  Google Scholar 

  97. D. Xia, W. Xu, L. Hu, et al., J. Hazard. Mater., 349, 91-100 (2018), https://doi.org/10.1016/j.jhazmat.2018.01.048.

    Article  CAS  PubMed  Google Scholar 

  98. X. Zou, Y. Dong, and S. Li, J. Taiwan Inst. Chem. Eng., 349, 158-165 (2018), https://doi.org/10.1016/j.jtice.2018.05.041.

    Article  CAS  Google Scholar 

  99. R. Sun, Q. Shi, M. Zhang, et al., J. Alloys Compd., 714, 619-626 (2017), 10.1016./j.jallcom.2017.04.108.

  100. M. Song, Z. Chai, J. Huang, and X. Wang, ACS Sustain. Chem. Eng., 8, No. 20, 7710-7720 (2020), https://doi.org/10.1021/acssuschemeng.0c01630.

    Article  CAS  Google Scholar 

  101. H. Anwer, M. Ali, S. Lee, et al., J. Hazard. Mater., 409, 124497 (2021), https://doi.org/10.1016/j.jhazmat.2020.124497.

    Article  CAS  PubMed  Google Scholar 

  102. Y. Li, X. Wu, and J. Li, et al., Appl. Catal. B, 229, 218-226 (2018), https://doi.org/10.1016/j.apcatb.2018.02.024.

    Article  CAS  Google Scholar 

  103. V.-D. Dao, L. T. Son, N. D. Nguyen, et al., J. Solid State Chem., 272, 62-68 (2019), https://doi.org/10.1016/j.jssc.2019.01.030.

    Article  CAS  Google Scholar 

  104. R. M. Mohamed, D. W. Bahnemann, A. S. Basaleh, and R. H. Gadah, Desalin. Water Treat., 182, No. 10, 332-341 (2020), https://doi.org/10.5004/dwt.2020.25227.

    Article  CAS  Google Scholar 

  105. J. U. Choi and W.-K. Jo, Ceram. Int., 46, 11346-11356 (2020), https://doi.org/10.1016/j.ceramint.2020.01.164.

    Article  CAS  Google Scholar 

  106. J. Meng, X. Wang, X. Yang, et al., Appl. Catal. B, 251, 168-180 (2019), https://doi.org/10.1016/j.apcatb.2019.03.063.

    Article  CAS  Google Scholar 

  107. X. Zou, C. Ran, Y. Yang, et al., RSC Adv., 6, No. 25, 20664-20670 (2016), https://doi.org/10.1039/C5RA01607J.

    Article  CAS  Google Scholar 

  108. R. Cheng, J. Y. Wen, J. C. Xia, et al., Catal. Today (2021), https://doi.org/10.1016/j.cattod.2021.05.006.

  109. R. Cheng, J. Y. Wen, J. C. Xia, et al., Catal. Today, 335, 565-573 (2019), https://doi.org/10.1016/j.cattod.2019.03046.

    Article  CAS  Google Scholar 

  110. Y. Wang, X. Xu, W. Lu, et al., Dalton Trans., 47, No. 12, 4219-4227 (2018).

    Article  CAS  Google Scholar 

  111. M. Zhang, X. Liu, X. Zeng, et al., Chem. Phys. Lett., 7, 100049 (2020), https://doi.org/10.1016/j.cpletx.2020.100049.

    Article  CAS  Google Scholar 

  112. O. Fontelles-Carceller, M. J. Munoz-Batista, M. Fernandez-Garcia, and A. Kubacka, ACS Appl. Mater. Interfaces, 8, No. 4, 2617-2627 (2016), doi: 10.102/acsami.5b10434.

  113. S. Wojtyla, K. Spiewak, and T. Baran, J. Photochem. Photobiol. A, 391, 112355 (2020), https://doi.org/10.1016/jjphotochem.2020.112355.

    Article  CAS  Google Scholar 

  114. V. Shvalagin, S. Kuchmiy, M. Skoryk, et al., Mater. Sci. Eng. B, 271, 115304 (2021), https://doi.org/10.1016/j.mseb.2021.115304.

    Article  CAS  Google Scholar 

  115. Z. Jin, Q. Zhang, J. Chen, et al., Appl. Catal. B, 234, 198-205 (2018), https://doi.org/10.1016/j.apcatb.2018.04.057.

    Article  CAS  Google Scholar 

  116. D. Han, J. Liu, H. Cai, et al., Appl. Surf. Sci., 464, 577-585 (2019), https://doi.org/10.1016/j.apsusc.2018.09.108.

    Article  CAS  Google Scholar 

  117. H. Y. Jiang, G. G. Liu, T. Wang, et al., RSC Adv., 5, No. 113, 92963-92969 (2015), https://doi.org/10.1039/C5RA18420G.

    Article  CAS  Google Scholar 

  118. Y. Li, S. Ouyang, H. Xu, et al., J. Am. Chem. Soc., 138, No. 40, 13289-13297 (2016), https://doi.org/10.1021/jacs.6b07272.

    Article  CAS  PubMed  Google Scholar 

  119. P. Kong, X. Li, P. Song, and F. Ma, Chem. Phys. Lett., 762, 138132 (2021), https://doi.org/10.1016/j.cplett.2020.138132.

    Article  CAS  Google Scholar 

  120. S. Song, C. Lu, X. Wu, et al., Appl. Catal. B, 227, 145-152 (2018), https://doi.org/10.1016/j.apcatb.2018.01.014.

    Article  CAS  Google Scholar 

  121. C. Hu, W.-F. Tsai, W.-H. Wei, et al., Carbon, 175, 467-477 (2021), https://doi.org/10.1016/j.carbon.2021.01.112.

    Article  CAS  Google Scholar 

  122. J. G. Yu, S. H. Wang, J. X. Low, and W. Xiao, Phys. Chem. Chem. Phys., 15, No. 39, 16883-16890 (2013), https://doi.org/10.1039/C3CP53131G.

    Article  CAS  PubMed  Google Scholar 

  123. S.-H. Liu and W.-X. Lin, J. Hazard. Mater., 368, 468-476 (2019), https://doi.org/10.1016/j.jhazmat.2019.01.082.

    Article  CAS  PubMed  Google Scholar 

  124. S. Wang, X. Hua, J. Ji, et al., J. Nanopart. Res., 21, 187 (2019), https://doi.org/10.1007/s11051-019-4612-4.

    Article  CAS  Google Scholar 

  125. W. Wang, D. Zhang, P. Sun, et al., Micropor. Mesopor. Mater., 322, 111134 (2021), https://doi.org/10.1016/j.micromeso.2021.111134.

    Article  CAS  Google Scholar 

  126. X. Rao, H. Dou, D. Long, and Y. Zhang, Chemosphere, 244, 125462 (2020), doi:https://doi.org/10.1016/j.chemosphere.2019.125462.

    Article  CAS  PubMed  Google Scholar 

  127. M. Baca, P. Rychtowski, R. Zhsng, et al., Sol. Energy, 207, 528-538 (2020), https://doi.org/10.1016/j.solener.2020.07.006.

    Article  CAS  Google Scholar 

  128. H. Jing, L. Chen, S. Yi, et al., Chem. Eng. J., 417, 129187 (2021).

    Article  CAS  Google Scholar 

  129. K. Kondo, N. Murakami, C. Ye, et al., Appl. Catal. B, 142/143, 362-367 (2013), https://doi.org/10.1016/j.apcatb.2013.05.042.

    Article  CAS  Google Scholar 

  130. L. Kong, X. Zhang, C. Wang, et al., Appl. Surf. Sci., 448, 288-296 (2018), https://doi.org/10.1016/j.apsusc.2018.04.011.

    Article  CAS  Google Scholar 

  131. F. Raziq, C. Li, M. Humayun, et al., Mater. Res. Bull., 70, 494-499 (2015), doi:https://doi.org/10.1016/j.materresbull.2015.05.018.

    Article  CAS  Google Scholar 

  132. C. Wang, Z. Rao, A. Mahmood, et al., J. Colloid Interface Sci., (2021). https://doi.org/10.1016/jjcis.2021.05.186.

  133. Q. Zhang, B. Xu, S. Yuan, et al., Catal. Today, 284, 27-36 (2017), https://doi.org/10.1016/j.cattod.2016.10.027.

    Article  CAS  Google Scholar 

  134. K. Katsumata, R. Motoyoshi, N. Matsushita, and K. Okada, J. Hazard. Mater., 260, 475-482 (2013), doi:https://doi.org/10.1016/j.jhazmat.2013.05.058.

    Article  CAS  PubMed  Google Scholar 

  135. Z. Jin, N. Murakami, T. Tsubota, and T. Ohno, Appl. Catal. B, 150, 479-485 (2014), https://doi.org/10.1016/j.apcatb.2013.12.048.

    Article  CAS  Google Scholar 

  136. M. H. Bae and W.-K. Jo, Build. Environ., 161, 106235 (2019), https://doi.org/10.1016/j.buildenv.2019.106235.

    Article  Google Scholar 

  137. J. Peral and D. F. Ollis, J. Catal., 136, No. 2, 554-565 (1992), doi:https://doi.org/10.1016/0021-9517(92)90085-V.

    Article  Google Scholar 

  138. X. Qian, M. Ren, D. Yue, et al., Appl. Catal. B, 212, 1-6 (2017), https://doi.org/10.1016/j.apcatb.2017.04.059.

    Article  CAS  Google Scholar 

  139. Y. Han, D. Yue, M. Kan, et al., Appl. Catal. B, 245, 190-196 (2019), https://doi.org/10.1016/j.apcatb.2018.12.060.

    Article  CAS  Google Scholar 

  140. M. Lyulyukin, N. Kovalevskiy, D. Selishchev, and D. Kozlov, J. Photochem. Photobiol. A, 405, 112981 (2021), https://doi.org/10.1016/j.jphotochem.2020.112981.

    Article  CAS  Google Scholar 

  141. S. Chen, W. Lu, H. Shen, et al., Appl. Catal. B, 254, 500-509 (2019), https://doi.org/10.1016/j.apcatb.2019.05.023.

    Article  CAS  Google Scholar 

  142. T. Sano, K. Koike, T. Hori, et al., Appl. Catal. B, 198, 133-141 (2016), https://doi.org/10.1016/j.apcatb.2016.05.057.

    Article  CAS  Google Scholar 

  143. L. Hu, H. He, D. Xia, et al., ACS Appl. Mater. Interfaces, 10, No. 22, 18693-18708 (2018), doi:https://doi.org/10.1021/acsami.8b03250.

    Article  CAS  PubMed  Google Scholar 

  144. D. A. Giannakoudakis, M. Seredych, E. Rodriguez-Castellon, and T. J. Bandosz, ChemNanoMat., 2, No. 4, 268-272 (2016).

    Article  CAS  Google Scholar 

  145. M. Florent, D. A. Giannakoudakis, and T. J. Bandosz, Appl. Catal. B, 272, 119038 (2020).

    Article  CAS  Google Scholar 

  146. M. Tayyab, L. Liu, and C.-H. Lee, Chemosphere, 280, 130685 (2021), https://doi.org/10.1016/j.chemosphere.2021.130685.

    Article  CAS  PubMed  Google Scholar 

  147. D. A. Giannakoudakis, Y. Hu, M. Florent, and T. J. Bandosz, Nanoscale Horiz., 2, No. 6, 356-364 (2017), https://doi.org/10.1039/C7NH00081B.

    Article  CAS  PubMed  Google Scholar 

  148. M. Zhang, S. Cai, J. Li, et al., J. Hazard. Mater., 412, 125266 (2021), https://doi.org/10.1016/j.jhazmat.2021.125266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Kuchmiy.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 4, pp. 201-223, July-August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchmiy, S.Y. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review. Theor Exp Chem 57, 237–261 (2021). https://doi.org/10.1007/s11237-021-09693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09693-3

Keywords

Navigation