Skip to main content

Advertisement

Log in

Catalytic Properties of CuFe2O4 in Steam Reforming of Ethanol

  • Published:
Theoretical and Experimental Chemistry Aims and scope

High activity was found for copper ferrite in the reforming of water–ethanol mixtures serving as bioethanol models at 300-550 °C. This catalyst has significant dehydrogenation activity. The selectivity relative to acetaldehyde reaches 97% at 300 °C with ethanol conversion greater than 90%. Acetone, CO2, and hydrogen are the major reforming products at 400-500 °C. The hydrogen yield is 3.9 moles H2/mole C2H5OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Sun and Y. Wang, ACS Catal., 4, 1078-1090 (2014).

    Article  CAS  Google Scholar 

  2. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energy Fuels, 19, 2098-2106 (2005).

    Article  CAS  Google Scholar 

  3. P. D. Vaidya and A. E. Rodrigues, Chem. Eng. J., 117, 39-49 (2006).

    Article  CAS  Google Scholar 

  4. M. Ni, D. Y. C. Leung, and M. K. H. Leung, Int. J. Hydrogen Energy, 32, 3238-3247 (2007).

    Article  CAS  Google Scholar 

  5. Y. I. Pyatnitsky, L. Yu. Dolgykh, I. L. Stolyarchuk, and P. E. Strizhak, Teor. Éksp. Khim., 49, No. 5, 265-283 (2013). [Theor. Exp. Chem., 49, No. 5, 277-297 (2013) (English translation).]

  6. F. Auprêtre, C. Descorme, and D. Duprez, Catal. Commun., 3, No. 6, 263-267 (2002).

    Article  Google Scholar 

  7. S. Freni, N. Modello, S. Cavallaro, et al., React. Kinet. Catal. Lett., 71, 143-152 (2000).

    Article  CAS  Google Scholar 

  8. T. Nishiguchi, T. Matsumoto, H. Kanai, et al., Appl. Catal. A, 279, 273-277 (2005).

    Article  CAS  Google Scholar 

  9. L. Dolgykh, I. Stolyarchuk, I. Deynega, and P. Strizhak, Int. J. Hydrogen Energy, 31, 1607-1610 (2006).

    Article  CAS  Google Scholar 

  10. V. Pakharukova, E. Moroz, V. Krivetsov, et al., J. Phys. Chem. C, 113, 21368-21375 (2009).

    Article  CAS  Google Scholar 

  11. L. Yu. Dolgikh, Yu. I. Pyatnitskii, S. I. Reshetnikov, et al., Teor. Éksp. Khim., 47, No. 5, 309-314 (2011). [Theor. Exp. Chem., 47, No. 5, 324-330 (2011) (English translation).]

  12. N. R. C. F. Machado, R. C. P. Rizzo, and R. P. S. Peguin, Acta Scientiarum, 24, 1637-1642 (2002).

    CAS  Google Scholar 

  13. A. E. Galetti, M. F. Gomez, L. A. Arrrúa, et al., Catal. Commun., 9, 1201-1208 (2008).

    Article  CAS  Google Scholar 

  14. I. V. Deinega, L. Yu. Dolgykh, I. L. Stolyarchuk, et al., Teor. Éksp. Khim., 48, No. 6, 364-371 (2012). [Theor. Exp. Chem., 48, No. 6, 386-393 (2013) (English translation).]

  15. F. Mariño, G. Baronetti, M. Jobbagy, et al., Appl. Catal. A, 238, 41-54 (2003).

    Article  Google Scholar 

  16. V. Klouz, V. Fierro, P. Denton, et al., J. Power Sources, 105, 26-34 (2002).

    Article  CAS  Google Scholar 

  17. A. Carrero, J. A. Calles, A. J. Vizcaíno, et al., Appl. Catal. A, 327, 82-94 (2007).

    Article  CAS  Google Scholar 

  18. N. Panda, A. K. Jena, S. Mohapatra, and S. R. Rout, Tetrahedron Lett., 52, 1924-1927 (2011).

    Article  CAS  Google Scholar 

  19. K. Inui, T. Kurabayashi, and S. Sato, J. Catal., 212, 207 (2002).

    Article  CAS  Google Scholar 

  20. J. A. Torres, J. Llorca, A. Cassanovas, et al., J. Power Sources, 169, 158-166 (2007).

    Article  CAS  Google Scholar 

  21. L. Yu. Dolgykh, I. L. Stolyarchuk, L. A. Staraya, et al., Teor. Éksp. Khim., 50, No. 4, 244-247 (2014). [Theor. Exp. Chem., 50, No. 4, 245-249 (2014) (English translation).]

  22. A. Khan and P. G. Smirniotis, J. Mol. Catal. A, 280, 43-51 (2008).

    Article  CAS  Google Scholar 

  23. J. I. Di Cosimo, C. R. Apesteguía, M. Ginés, and E. Iglesia, J. Catal., 190, 261-275 (2000).

    Article  Google Scholar 

  24. L. Yu. Dolgykh, I. L. Stolyarchuk, I. V. Vasylenko, et al., Teor. Éksp. Khim., 49, No. 3, 172-177 (2013). [Theor. Exp. Chem., 49, No. 3, 185-192 (2013) (English translation).]

  25. J. Sun, A. M. Karim, D. Mei, et al., Appl. Catal. B, 162, 141-148 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Dolgykh.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 4, pp. 225-229, July-August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgykh, L.Y., Stolyarchuk, I.L., Staraya, L.A. et al. Catalytic Properties of CuFe2O4 in Steam Reforming of Ethanol. Theor Exp Chem 51, 230–235 (2015). https://doi.org/10.1007/s11237-015-9421-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9421-y

Key words

Navigation