Skip to main content
Log in

GTIACO: energy efficient clustering algorithm based on game theory and improved ant colony optimization

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Recently, wireless sensor networks have been widely used for environmental and structural safety monitoring. However, node batteries cannot be replaced or easily recharged in harsh environments. Maximizing network lifetime remains a challenging issue in designing WSN routing. This paper introduces GTIACO, a novel metaheuristic clustering protocol. It employs an optimal cluster head function to determine cluster number and utilizes game theory for selecting optimal cluster heads. To optimize inter-cluster routing, improved ant colony optimization (ACO) is introduced to construct gathering paths from clusters to the base station. Both blind pathways, pheromone concentration, and angle factors are considered to improve path exploration and transmission efficiency in ant colonies. To assess network performance, various scenarios involving different base station placements and network densities are examined. Experimental results demonstrate GTIACO's superiority over LEACH, ACO, SEP, and PRESPE protocols in network lifetime, stability, energy, and throughput. The proposed GTIACO shows an improvement of at least 4.3% in network lifetime and 32.8% in network throughout. It exhibits superior stability and transmission efficiency across diverse network densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sridharan, S., Venkatraman, S., & Raja, S. P. (2023). A novel lie hypergraph based lifetime enhancement routing protocol for environmental monitoring in wireless sensor networks. IEEE Transactions on Computational Social Systems. https://doi.org/10.1109/TCSS.2023.3262273

    Article  Google Scholar 

  2. Zhang, T., Gou, Y., Liu, J., Song, S., Yang, T., & Cui, J. H. (2024). Joint link scheduling and power allocation in imperfect and energy-constrained underwater wireless sensor networks. IEEE Transactions on Mobile Computing, 01, 1–18. https://doi.org/10.1109/TMC.2024.3368425

    Article  Google Scholar 

  3. Yang, W., Du, H., Liew, Z. Q., Lim, W. Y. B., Xiong, Z., Niyato, D., Chi, X., Shen, X., & Miao, C. (2022). Semantic communications for future internet: Fundamentals, applications, and challenges. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2022.3223224

    Article  Google Scholar 

  4. Priyadarshi, R. (2024). Energy-efficient routing in wireless sensor networks: A meta-heuristic and artificial intelligence-based approach: A comprehensive review. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-023-10039-6

    Article  Google Scholar 

  5. Abdulai, J. D., Amengu, A. A., Katsriku, F. A., & Adu-Manu, K. S. (2024). CBU-SMAC: An energy-efficient CLUSTER-BASED UNIFIED SMAC algorithm for wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-023-04737-z

    Article  Google Scholar 

  6. Mittal, A., Mirchandani, N., Michetti, G., Colombo, L., Haque, T., Rinaldi, M., & Shrivastava, A. (2022). A±0.5 dB, 6 nW RSSI Circuit With RF Power-to-Digital Conversion Technique for Ultra-Low Power IoT Radio Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(9), 3526–3539. https://doi.org/10.1109/TCSI.2022.3181543

    Article  Google Scholar 

  7. Qian, L., Cui, K., Xia, H., Shao, H., Wang, J., & Xia, Y. (2022). An inductive power transfer system for powering wireless sensor nodes in structural health monitoring applications. IEEE Transactions on Microwave Theory and Techniques, 70(7), 3732–3740. https://doi.org/10.1109/TMTT.2022.3174924

    Article  Google Scholar 

  8. Liu, S. B., Zhang, F. S., Boyuan, M., Gao, S. P., & Guo, Y. X. (2022). Multiband dual-polarized hybrid antenna with complementary beam for simultaneous RF energy harvesting and WPT. IEEE Transactions on Antennas and Propagation, 70(9), 8485–8495. https://doi.org/10.1109/TAP.2022.3177484

    Article  Google Scholar 

  9. Wu, Y. C., Chaudhari, Q., & Serpedin, E. (2010). Clock synchronization of wireless sensor networks. IEEE Signal Processing Magazine, 28(1), 124–138. https://doi.org/10.1109/MSP.2010.938757

    Article  Google Scholar 

  10. Dwivedi, A. K., Mehra, P. S., Pal, O., Doja, M. N., & Alam, B. (2021). EETSP: Energy-efficient two-stage routing protocol for wireless sensor network-assisted Internet of Things. International Journal of Communication Systems, 34(17), e4965. https://doi.org/10.1002/dac.4965

    Article  Google Scholar 

  11. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii international conference on system sciences (pp. 10-pp). IEEE. https://doi.org/10.1109/HICSS.2000.926982

  12. Lindsey, S., & Raghavendra, C. S. (2002, March). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings, IEEE aerospace conference (Vol. 3, pp. 3–3). IEEE. https://doi.org/10.1109/AERO.2002.1035242

  13. Kaviarasan, S., & Srinivasan, R. (2024). Developing a novel energy efficient routing protocol in WSN using adaptive remora optimization algorithm. Expert Systems with Applications, 244, 122873. https://doi.org/10.1016/j.eswa.2023.122873

    Article  Google Scholar 

  14. Xu, M., Zu, Y., Zhou, J., Liu, Y., & Li, C. (2024). Energy-efficient secure QoS routing algorithm based on elite niche clone evolutionary computing for WSN. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2023.3342091

    Article  Google Scholar 

  15. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379. https://doi.org/10.1109/TMC.2004.41

    Article  Google Scholar 

  16. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Second international workshop on sensor and actor network protocols and applications (SANPA 2004) (Vol. 3).

  17. Loscri, V., Morabito, G., & Marano, S. (2005, September). A two-level hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE vehicular technology conference (Vol. 62, No. 3, p. 1809). IEEE; 1999. https://doi.org/10.1109/VETECF.2005.1558418s

  18. Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: Zonal-stable election protocol for wireless sensor networks. arXiv preprint arXiv:1303.5364.

  19. Aryai, P., Khademzadeh, A., Jassbi, S. J., Hosseinzadeh, M., Hashemzadeh, O., & Shokouhifar, M. (2023). Real-time health monitoring in WBANs using hybrid metaheuristic-driven machine learning routing protocol (MDML-RP). AEU-International Journal of Electronics and Communications, 168, 154723. https://doi.org/10.1016/j.aeue.2023.154723

    Article  Google Scholar 

  20. Fanian, F., & Rafsanjani, M. K. (2023). Three-stage fuzzy-metaheuristic algorithm for smart cities: Scheduling mobile charging and automatic rule tuning in WRSNs. Applied Soft Computing, 145, 110599. https://doi.org/10.1016/j.asoc.2023.110599

    Article  Google Scholar 

  21. Taheri, A., RahimiZadeh, K., Beheshti, A., Baumbach, J., Rao, R. V., Mirjalili, S., & Gandomi, A. H. (2024). Partial reinforcement optimizer: An evolutionary optimization algorithm. Expert Systems with Applications, 238, 122070. https://doi.org/10.1016/j.eswa.2023.122070

    Article  Google Scholar 

  22. Quan, R., Liang, W., Wang, J., Li, X., & Chang, Y. (2024). An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm. International Journal of Hydrogen Energy, 50, 1184–1196. https://doi.org/10.1016/j.ijhydene.2023.10.019

    Article  Google Scholar 

  23. Elhabyan, R. S., & Yagoub, M. C. (2015). Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. Journal of Network and Computer Applications, 52, 116–128. https://doi.org/10.1016/j.jnca.2015.02.004

    Article  Google Scholar 

  24. Quan, R., Guo, H., Liu, D., Chang, Y., & Wan, H. (2023). Performance optimization of a thermoelectric generator for automotive application using an improved whale optimization algorithm. Sustainable Energy & Fuels, 7, 5528–5545. https://doi.org/10.1039/D3SE01202F

    Article  Google Scholar 

  25. Sharma, S. K., & Chawla, M. (2024). PRESEP: Cluster based metaheuristic algorithm for energy-efficient wireless sensor network application in internet of things. Wireless Personal Communications. https://doi.org/10.1007/s11277-023-10814-5

    Article  Google Scholar 

  26. Ari, A. A. A., Yenke, B. O., Labraoui, N., Damakoa, I., & Gueroui, A. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications, 69, 77–97. https://doi.org/10.1016/j.jnca.2016.04.020

    Article  Google Scholar 

  27. Zivkovic, M., Bacanin, N., Tuba, E., Strumberger, I., Bezdan, T., & Tuba, M. (2020, June). Wireless sensor networks lifetime optimization based on the improved firefly algorithm. In 2020 International wireless communications and mobile computing (IWCMC) (pp. 1176–1181). IEEE. https://doi.org/10.1109/IWCMC48107.2020.9148087

  28. Okdem, S., & Karaboga, D. (2009). Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors, 9(02), 909–921. https://doi.org/10.3390/s90200909

    Article  Google Scholar 

  29. Shokouhifar, M. (2021). FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing. Applied Soft Computing, 107, 107401. https://doi.org/10.1016/j.asoc.2021.107401

    Article  Google Scholar 

  30. Yang, X., Yan, J., Wang, D., Xu, Y., & Hua, G. (2024). WOAD3QN-RP: An intelligent routing protocol in wireless sensor networks—A swarm intelligence and deep reinforcement learning based approach. Expert Systems with Applications, 246, 123089. https://doi.org/10.1016/j.eswa.2023.123089

    Article  Google Scholar 

  31. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  32. Raghuvanshi, A. S., Tiwari, S., Tripathi, R., & Kishor, N. (2012). Optimal number of clusters in wireless sensor networks: A FCM approach. International Journal of Sensor Networks, 12(1), 16–24. https://doi.org/10.1504/IJSNET.2012.047707

    Article  Google Scholar 

  33. AlSkaif, T., Zapata, M. G., & Bellalta, B. (2015). Game theory for energy efficiency in wireless sensor networks: Latest trends. Journal of Network and Computer Applications, 54, 33–61. https://doi.org/10.1016/j.jnca.2015.03.011

    Article  Google Scholar 

  34. Kassan, S., Gaber, J., & Lorenz, P. (2018). Game theory based distributed clustering approach to maximize wireless sensors network lifetime. Journal of Network and Computer Applications, 123, 80–88. https://doi.org/10.1016/j.jnca.2018.09.004

    Article  Google Scholar 

  35. Gangwar, S., Prasad, I. B., Yadav, S. S., Pal, V., & Kumar, N. (2023). GTFR: A game theory based fuzzy routing protocol for WSNs. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2023.3248226

    Article  Google Scholar 

  36. Cai, L., Huang, R., Li, Z., Luo, L., Xiong, Z., & Chen, Y. (2023). A clustering election game-based and two-level management protocol for wireless sensor networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2023.3332072

    Article  Google Scholar 

  37. Seyyedabbasi, A., Kiani, F., Allahviranloo, T., Fernandez-Gamiz, U., & Noeiaghdam, S. (2023). Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms. Alexandria Engineering Journal, 63, 339–357. https://doi.org/10.1016/j.aej.2022.08.009

    Article  Google Scholar 

Download references

Funding

This paper was supported by the National Natural Science Foundation of China (Grant numbers 51977061 and 51407063) and the Research Startup Fund of Hubei University of Technology (Grant numbers XJ2021004901).

Author information

Authors and Affiliations

Authors

Contributions

HW and ZQ wrote the main manuscript text and RQ, MD, WD prepared figures, tables and algorithms. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rui Quan.

Ethics declarations

Conflict of interest

Authors declare that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Qiu, Z., Quan, R. et al. GTIACO: energy efficient clustering algorithm based on game theory and improved ant colony optimization. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01132-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01132-7

Keywords

Navigation