Skip to main content
Log in

A single-channel blind source separation algorithm based on improved wavelet packet and variational mode decomposition

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

According to the theory of single channel blind source separation (SCBSS), the algorithm based on virtual channel expansion must be established in a known source number, and most algorithms can only separate two source signals. When separating multiple source signals, the performance will deteriorate sharply. Since the existing methods of this kind use only a single algorithm for virtual channel expansion, they cannot retain all the source signals’ valuable information and effectively separate the multiple source signals. From the perspective of making the constructed virtual multi-channel signal contain enough information of the source signals as much as possible, this paper proposes a SCBSS algorithm based on improved wavelet packet and variational mode decomposition (IWP-VMD-SCBSS). Firstly, the source number is estimated according to the interval sampling method and the minimum description length (MDL) criterion. Secondly, the signal reconstruction method based on improved wavelet packet decomposition (IWPD) is used to reconstruct multiple purer virtual signals. Then the virtual signals are combined with the first intrinsic mode function (IMF) of two-level variational mode decomposition (VMD) and the original single-channel observed signal to constitute a virtual multi-channel signal. Finally, the joint approximate diagonalization of eigen-matrices (JADE) algorithm is used to process the virtual multi-channel observed signal to achieve BSS and obtain estimated source signals. The simulation results indicate that the IWP-VMD-SCBSS algorithm can achieve a lower symbol error rate (SER) than existing algorithms and lower computational complexity. It can solve the SCBSS problem of multiple communication signals effectively under an unknown source number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The datasets generated or analyzed and material during this current study are available from the corresponding author on reasonable request.

Code availability

The codes during this current study are available from the corresponding author on reasonable request.

References

  1. Wei, L. L., Liu, Y. S., & Cheng, D. F. (2018). A novel partial discharge ultra-high frequency signal de-noising method based on a single channel blind source separation algorithm. Electronics Newsweekly, 11(3), 509–516.

    Google Scholar 

  2. Pang, L. H., & Deng, X. R. (2016). A SCBSS methodology for time-frequency overlapped signals using non-negative matrix factorization. International Journal of Electronics, 104(4), 624–634.

    Article  ADS  Google Scholar 

  3. Wu, C. L., Liu, Z., Wang, X., Jiang, W. L., & Ru, X. H. (2016). Single-channel blind source separation of co-frequency overlapped GMSK signals under constant-modulus constraints. IEEE Communications Letters, 20(3), 486–489.

    Article  Google Scholar 

  4. Zhao, M. C., Yao, X. J., Wang, J., & Dong, S. H. (2021). Single-channel blind source separation of spatial aliasing signal based on Stacked-TCN. Systems Engineering and Electronics, 43(9), 2628–2636.

    Google Scholar 

  5. Al-Tmeme, A., Woo, W. L., Dlay, S. S., & Gao, B. (2018). Single channel informed signal separation using artificial-stereophonic mixtures and exemplar-guided matrix factor deconvolution. International Journal Adaptive Control and Signal Processing, 32(9), 1259–1281.

    Article  MathSciNet  Google Scholar 

  6. Sun, L. H., Xie, K. L., Gu, T., Chen, J., & Yang, Z. (2019). Joint dictionary learning using a new optimization method for single-channel blind source separation. Speech Communication, 106, 85–94.

    Article  Google Scholar 

  7. Tengtrairat, N., & Woo, W. L. (2015). Single-channel separation using underdetermined blind autoregressive model and least absolute deviation. Neurocomputing, 147(1), 412–425.

    Article  Google Scholar 

  8. He, P. J., She, T. T., Li, W. H., & Yuan, W. B. (2018). Single channel blind source separation on the instantaneous mixed signal of multiple dynamic sources. Mechanical Systems and Signal Processing, 113, 22–35.

    Article  ADS  Google Scholar 

  9. Lian, J. J., Wang, X. Q., Ma, B., & Liu, D. M. (2018). Improvement to the sources selection to identify the low frequency noise induced by flood discharge. Mechanical Systems and Signal Processing, 110, 139–151.

    Article  ADS  Google Scholar 

  10. Oliveira, D. R. D., Lima, M. A. A., Silva, L. R. M., Ferreira, D. D., & Duque, C. A. (2021). Second order blind identification algorithm with exact model order estimation for harmonic and interharmonic decomposition with reduced complexity. International Journal of Electrical Power & Energy Systems, 125, 106415.

    Article  Google Scholar 

  11. Jiang, X., Geng, D. Y., & Zhang, Y. Y. (2019). BCG signal de-noising method research based on EMD-ICA. Chinese Journal of Biomedical Engineering, 38(2), 139–148.

    Google Scholar 

  12. Xie, Y., Xie, K., & Xie, S. (2019). Underdetermined blind source separation for heart sound using higher-order statistics and sparse representation. IEEE Access, 7, 87606–87616.

    Article  Google Scholar 

  13. Gao, B., Woo, W. L., & Dlay, S. S. (2011). Single-channel source separation using EMD-subband variable regularized sparse features. IEEE Transactions on Audio, Speech, and Language Processing, 19(4), 961–976.

    Article  Google Scholar 

  14. Pang, L. H., & Tang, B. (2017). Wavelet-FastICA-based separation method for single-channel and time-frequency overlapped signal in electromagnetic surveillance. International Journal of Information and Communication Technology., 11(2), 187–201.

    Article  Google Scholar 

  15. Prasanna Kumar, M. K., & Kumaraswamy, R. (2017). Single-channel speech separation using combined EMD and speech-specific information. International Journal of Speech Technology., 20(4), 1037–1047.

    Article  Google Scholar 

  16. Zhang, Y. N., Qi, S. B., & Zhou, L. (2018). Single channel blind source separation for wind turbine aeroacoustics signals based on variational mode decomposition. IEEE Access, 6(1), 73952–73964.

    Article  Google Scholar 

  17. Dong, S. J., Tang, B. P., & Zhang, Y. (2012). A repeated single channel mechanical signal blind separation method based on morphological filtering and singular value decomposition. Measurement, 45(8), 2052–2063.

    Article  ADS  Google Scholar 

  18. Liu, X., Guan, Y. L., Koh, S. N., Liu, Z., & Wang, P. (2018). Low-complexity single-channel blind separation of co-frequency coded signals. IEEE Communications Letters, 22(5), 990–993.

    Article  Google Scholar 

  19. Yang, Y., Zhang, D. L., & Peng, H. (2018). Single-channel blind source separation for paired carrier multiple access signals. IET Signal Processing, 12(1), 37–41.

    Article  Google Scholar 

  20. Zhu, H., Zhang, S., & Zhao, H. (2016). Single-channel source separation of multi-component radar signal with the same generalized period using ICA. Circuits, Systems, and Signal Processing, 35(1), 353–363.

    Article  MathSciNet  Google Scholar 

  21. Fu, W. H., Yang, X. N., & Liu, N. A. (2008). Robust algorithm for communication signal blind separation fourth-order-cumulant-based. Journal of Electronics & Information Technology, 30(8), 1853–1856.

    Article  Google Scholar 

  22. Al-Tmeme, A., Woo, W. L., Dlay, S. S., & Gao, B. (2017). Underdetermined convolutive source separation using GEM-MU with variational approximated optimum model order NMF2D. IEEE Transactions on Audio, Speech and Language Processing., 25(1), 31–45.

    Google Scholar 

  23. He, P. J., Qi, M., Liu, G. Y., Yu, Z. J., & Fu, Q. (2019). An adaptive single channel EMD-TNMF blind source separation algorithm for both instantaneous and convolutive mixed signal. Conference Series: Materials Science and Engineering., 658(1), 012003.

    Article  Google Scholar 

  24. Parathai, P., Tengtrairat, N., & Woo, W. L. (2019). Single-channel signal separation using spectral basis correlation with sparse nonnegative tensor factorization. Circuits, Systems, and Signal Processing, 38, 5786–5816.

    Article  Google Scholar 

  25. He, J., Chen, W., & Song, Y. X. (2020). Single channel blind source separation under deep recurrent neural network. Wireless Personal Communications, 115(2), 1277–1289.

    Article  Google Scholar 

  26. Zhou, H. J., Jiao, L. C., Zheng, S. J., Yang, L. F., Shen, W. G., & Yang, X. N. (2020). Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework. China Communications, 17(10), 157–169.

    Article  Google Scholar 

  27. Yue, G., Li, X., Chen, S. Y., & Li, X. L. (2021). An automatic ocular artifacts removal approach for multi-channel EEG data based on NMF and EMD. Journal of Neural Engineering, 18(5), 6012–6017.

    Google Scholar 

  28. Liu, X. L., Wang, H., & Huang, Y. M. (2021). A SCBSS signal de-noising method of integrating EEMD and ESMD for dynamic deflection of bridges using GBSAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2845–2856.

    Article  ADS  Google Scholar 

  29. Shang, H. K., Lo, K. L., & Li, F. (2017). Partial discharge feature extraction based on ensemble empirical mode decomposition and sample entropy. Entropy, 19(9), 439–456.

    Article  ADS  Google Scholar 

  30. Song, H. L., Dong, H. B., Yuan, Z. W., Zhu, J., Zhang, H. Y., & Huang, Y. J. (2019). An EEMD-based electromagnetic induction method for nondestructive testing of buried metal conductors. IEEE Access, 7(1), 142261–142271.

    Article  Google Scholar 

  31. Zhao, L. H., Hong, G., Wang, Z. L., Chen, W. W., & Long, W. (2021). Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion. IEEJ Transactions on Electrical and Electronic Engineering, 16(5), 677–686.

    Article  Google Scholar 

  32. Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544.

    Article  ADS  MathSciNet  Google Scholar 

  33. Bhattacharjee, A., Fattah, S. A., Zhu, W. P., & Ahmad, M. O. (2018). VMD-RiM: Rician modeling of temporal feature variation extracted from variational mode decomposed EEGs signal for automatic sleep apnea detection. IEEE Access, 6(1), 77440–77453.

    Article  Google Scholar 

  34. Ma, Z. Q., Li, Y. C., Liu, Z., & Guang, C. J. (2016). Rolling bearings’ fault feature extraction based on variational mode decomposition and Teager energy operator. Journal of Vibration and Shock, 35(13), 134–139.

    Google Scholar 

  35. Wang, R., Xu, L., & Liu, F. K. (2020). Bearing fault diagnosis based on improved VMD and DCNN. Journal of Vibro-Engineering, 22(5), 1055–1068.

    Article  Google Scholar 

  36. Zhao, Z. J., & Huang, Y. B. (2017). Single-channel blind-source separation algorithm based on wavelet packet decomposition. Communications Technology, 50(3), 425–429.

    Google Scholar 

  37. Wu, Y., Li, X. K., & Cao, Z. M. (2020). Source number estimation based on a novel multi-view meta-hierarchical classification framework. Measurement Science and Technology., 31(6), 14–29.

    CAS  Google Scholar 

  38. Dong, Z., Hu, J. P., Du, B. L., & He, Y. Z. (2017). Improvement of source number estimation method for single channel signal. PLoS ONE, 11(10), e0164654.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the anonymous reviewers who read the drafts and provided many helpful suggestions.

Funding

This work is sponsored by the Natural Science Foundation of Shanghai (19ZR1454000).

Author information

Authors and Affiliations

Authors

Contributions

Wensheng Zhao and Weihong Fu wrote the main manuscript text. All authors reviewed the manuscript. The authors have no relevant financial or non-financial interests to disclose.

Corresponding author

Correspondence to Weihong Fu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Fu, W. A single-channel blind source separation algorithm based on improved wavelet packet and variational mode decomposition. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01115-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01115-8

Keywords

Navigation