Skip to main content
Log in

Statistical behavioral characteristics of network communication delay in IPv4/IPv6 Internet

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Studies on the delay characteristics under the Internet macro-topology provides a reference for resolving the real-time performance issue of the data transmission of Internet devices. With the overall advancement of IPv6 Internet deployment, the changes in network structure and paths will generate different degrees of delay. In this context, a comparative analysis of the behavioral characteristics of IPv4 and IPv6 network delay was performed in this study. We selected the sampled data of valid paths located at four monitors on different continents under the CAIDA_Ark project to obtain statistics for the network delay and communication diameter on the IPv4 and IPv6 Internet and found that their correlation was extremely weak. Furthermore, the communication diameter on IPv6 Internet was slightly shorter than that on IPv4 Internet. The network delay exhibited a bimodal or multimodal heavy-tailed distribution. The network delay and maximum link delay for IPv4 and IPv6 Internet were strongly correlated, indicating that the bottleneck delay affects the relationship between the network delay and communication diameter. Next, we analyzed the relationship between network delay and bottleneck delay for IPv4 and IPv6 Internet and found that bottleneck delay has a more significant impact on the network delay on the valid paths for IPv4 Internet than for IPv6 Internet. After mapping the IP addresses at both ends of the bottleneck delay to the Autonomous Systems (ASes), we found that the bottleneck delay on the valid paths for the IPv4 Internet was mostly distributed in the intra-AS, whereas it was in the inter-AS for the IPv6 Internet. Finally, we analyzed the factors affecting bottleneck delay and found that propagation delay in the long-distance range is an important factor (L > 4000 km on IPv4 Internet and L > 7000 km on IPv6 Internet). In addition, for IPv4 Internet, queuing delay is an important factor affecting bottleneck delay, whereas in the process of data communication on the IPv6 Internet, the impact of propagation and queuing delays on the bottleneck delay is weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that has been used in this paper is cited with references at their respective place.

References

  1. Khalifeh, A. F., Al-Taee, M. A., & Murshed, A. N. (2017). Network-status aware quality adaptation algorithm for improving real-time video streaming over the internet. Multimedia Tools and Applications, 76, 26129–26152. https://doi.org/10.1007/s11042-016-3999-5

    Article  Google Scholar 

  2. Jiang, B., Abdullah, A. A., Xiong, H. Y., Li, J., Li, L., Chen, H. Y., Wang, J., Dou, D. J., & Guo, Z. S. (2022). Machine learning in real-time Internet of Things (IoT) systems: A survey. IEEE Internet of Things Journal, 9(11), 8364–8386. https://doi.org/10.1109/JIOT.2022.3161050

    Article  Google Scholar 

  3. Kim, J., Jeon, Y., & Kim, H. (2018). The intelligent IoT common service platform architecture and service implementation. The Journal of Supercomputing, 74, 4242–4260. https://doi.org/10.1007/s11227-016-1845-1

    Article  Google Scholar 

  4. Martin, S., Sacha, H., Martin, H., Marko, S., & Klaus, W. (2021). Challenges and opportunities in securing the industrial Internet of Things. IEEE Transactions on Industrial Informatics, 17(5), 2985–2996. https://doi.org/10.1109/TII.2020.3023507

    Article  Google Scholar 

  5. Niccolo, P., Manuel, C., & Iyad, R. (2020). BeeMe: Real-time Internet control of situated human agents. Computer, 53(8), 49–58. https://doi.org/10.1109/MC.2020.2996824

    Article  Google Scholar 

  6. Akio, K., Takuya, T., Bijoy, C. C, & Eiji, O. (2021). An optimal allocation scheme of satabase and applications for delay sensitive IoT services. In 2021 IEEE Global communications conference (GLOBECOM), (pp. 1–6). IEEE. https://doi.org/10.1109/GLOBECOM46510.2021.9685736

  7. ICANN. (2019). IANA-Internet Assigned Numbers Authority. http://www.iana.org/numbers/.

  8. Esteban, C., Carlos, S., Ignacio, J. A., & Amogh, D. (2019). Studying the evolution of content providers in IPv4 and IPv6 internet cores. Computer Communications, 145, 54–65. https://doi.org/10.1016/j.comcom.2019.05.022

    Article  Google Scholar 

  9. Li, F. L., Yang, J. H., Wu, J. P., Zheng, Z. Y., Zhang, H. J., & Wang, X. W. (2014). Configuration analysis and recommendation: Case studies in IPv6 networks. Computer Communications, 37, 40–52. https://doi.org/10.1016/j.comcom.2013.09.014

    Article  Google Scholar 

  10. Zeydan, E., & Turk, Y. (2023). User plane acceleration service for next-generation cellular networks. Telecommunication Systems. https://doi.org/10.1007/s11235-023-01058-6

    Article  Google Scholar 

  11. He, Y., Siganos, G., Faloutsos, M. (2012). Internet topology. In Meyers, R. (Eds.), Computational complexity (pp. 1663–1680). Springer. https://doi.org/10.1007/978-1-4614-1800-9_107

  12. Yang, B., Zhao, H., Zhang, J., Ai, J., Jia, S. Y., Ge, X., & Liu, W. (2013). Analysis of interlayer connection catastrophe characteristics in internet AS level topology. Telkomnika Indonesian Journal of Electrical Engineering, 11(2), 567–576. https://doi.org/10.11591/telkomnika.v11i2.1978

    Article  CAS  Google Scholar 

  13. Zhao, H., Xu, Y., & Su, W. J. (2006). Analysis of short-term and long-term forecast of weighted Internet traveling diameter. Journal of Computer Research and Development, 43(6), 1027–1035. https://doi.org/10.1360/crad20060610

    Article  Google Scholar 

  14. Hu, Z. G., Tian, C. Q., Du, L., Guan, X. Q., & Gao, F. (2017). Current research and future perspective on IP network performance measurement. Journal of Software, 28(1), 105–134. https://doi.org/10.13328/j.cnki.jos.005127

    Article  Google Scholar 

  15. Soham, D., & Sartaj, S. (2015). Network topology optimization for data aggregation using multiple paths. International Journal of Metaheuristics, 4(2), 115–140. https://doi.org/10.1504/IJMHEUR.2015.074238

    Article  Google Scholar 

  16. Mi, X., Zhu, J., & Zhao, H. (2014). Analysis of fractal characteristic of Internet router and IPv6 level topology. Journal of Northeastern University (Natural Science), 35(1), 43–46. https://doi.org/10.3969/j.issn.1005-3026.2014.01.010

    Article  Google Scholar 

  17. Zhang, Y., Yang, G.Z., & Luo, Z.H. (2021). Research on topology evolution of autonomous system network. In ICCNS '21: Proceedings of the 2021 11th international conference on communication and network security (pp. 66–79). https://doi.org/10.1145/3507509.3507519

  18. Hébert-Dufresne, L., Grochow, J., & Allard, A. (2016). Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition. Scientific Reports, 6, 31708. https://doi.org/10.1038/srep31708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schieber, T. A., Carpi, L. C., Pardalos, P. M., Cristina, M., Albert, D. G., & Martín, G. R. (2023). Diffusion capacity of single and interconnected networks. Nature Communications, 14, 2217. https://doi.org/10.1038/s41467-023-37323-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, R. C. (2022). News hotspot event diffusion mechanism based on complex network. Mathematical Problems in Engineering, 2022, 1–9. https://doi.org/10.1155/2022/1455324

    Article  Google Scholar 

  21. CAIDA. https://www.caida.org/

  22. CAIDA Ark Project. https://www.caida.org/projects/ark/

  23. Zhang, B., Tze, S. E. N., Animesh, N., Rudolf, H. R., Peter, D., & Wang, G. (2010). Measurement-based analysis, modeling, and synthesis of the Internet delay space. IEEE/ACM Transactions on Networking, 18(1), 229–242. https://doi.org/10.1109/TNET.2009.2024083

    Article  Google Scholar 

  24. Zhang, Y., Ricardo, O., Wang, Y. Y., Shen, S., Zhang, B. B., Bi, J., Zhang, H. L., & Zhang, L. X. (2011). A framework to quantify the pitfalls of using traceroute in AS-level topology measurement. IEEE Journal on Selected Areas in Communications, 29(9), 1822–1836. https://doi.org/10.1109/JSAC.2011.111007

    Article  Google Scholar 

  25. Marchetta, P., de Donato, W., & Pescapé, A. (2013). Detecting third-party addresses in traceroute traces with IP timestamp option. Passive and Active Measurement, 7799, 21–30. https://doi.org/10.1007/978-3-642-36516-4_3

    Article  Google Scholar 

  26. Lin, C., Bi, Y. G., Zhao, H., & Cai, W. (2017). Research on bottleneck-delay in internet based on IP united mapping. Peer-to-Peer Networking and Applications, 10, 1219–1231. https://doi.org/10.1007/s12083-016-0474-z

    Article  Google Scholar 

  27. Matt, C., Fan, X., Hu, Z., Ethan, K.B., John, H. & Ramesh, G. (2013). Mapping the expansion of Goolge’s serving infrastructure, In IMC '13: Proceedings of the 2013 conference on Internet measurement conference (pp.313–326). https://doi.org/10.1145/2504730.2504754

  28. Gonca, G. (2019). On spectral analysis of the Internet delay space and detecting anomalous routing paths. Turkish Journal of Electrical Engineering and Computer Sciences, 27(2), 738–751. https://doi.org/10.3906/elk-1801-79

    Article  Google Scholar 

  29. Hiroomi, I. (2020). Detection bottleneck links without multiple nodes. In 2020 International symposium on information theory and its applications (ISITA), (pp. 490–493). IEEE. https://ieeexplore.ieee.org/document/9366209/references#references

  30. Liu, J. L., Huang, J. W., Jiang, W. C., Li, Z. Y., Li, Y. J., Lyu, W. J., Jiang, W. C., Zhang, J., & Wang, J. X. (2022). End-to-End congestion control to provide deterministic latency over internet. IEEE Communications Letters, 26(4), 843–847. https://doi.org/10.1109/LCOMM.2022.3144692

    Article  Google Scholar 

  31. Ali, G. (2022). The delay measurement and analysis of unreachable hosts of internet. The International Arab Journal of Information Technology, 19(1), 63–71. https://doi.org/10.34028/iajit/19/1/8

    Article  MathSciNet  Google Scholar 

  32. Zeeshan, A., Adnan, S., Sohaib, L., Abdul, H., & Muhammad, Y. (2023). Challenges and mitigation strategies for transition from IPv4 network to virtualized next-generation IPv6 network. The International Arab Journal of Information Technology, 20(1), 78–91. https://doi.org/10.34028/iajit/20/1/9

    Article  Google Scholar 

  33. Stanford, L. L., & Stephen, S. (2014). IPv4 to IPv6: Challenges, solutions, and lessons. Telecommunications Policy, 38(11), 1059–1068. https://doi.org/10.1016/j.telpol.2014.06.008

    Article  Google Scholar 

  34. El Khadiri, K., Labouidya, O., Kamoun, N. E., & Hilal, R. (2019). Study of the impact of routing on the performance of IPv4/IPv6 transition mechanisms. Smart Data and Computational Intelligence, 66, 43–51. https://doi.org/10.1007/978-3-030-11914-0_5

    Article  Google Scholar 

  35. Hsu, K. S., & Shen, C. A. (2023). The design of a configurable and low-latency packet parsing system for communication networks. Telecommunication System, 82, 451–463. https://doi.org/10.1007/s11235-023-00992-9

    Article  Google Scholar 

  36. John, P., Mark, A., & Dale, D. (2019). IPv6 diffusion milestones: Assessing the quantity and quality of adoption. Journal of International Technology and Information Management, 28(1), 1–28. https://doi.org/10.58729/1941-6679.1375

    Article  Google Scholar 

  37. Streibelt, F., Patrick, S., Franziska, L, Carlos H. G, Anja, F., Oliver, G., Tobias, F. (2023). How Ready is DNS for an IPv6-Only World?. In Passive and active measurement PAM 2023 (Vol. 13882, pp. 525–549). https://doi.org/10.1007/978-3-031-28486-1_22

  38. Mehdi, N., & Roch, G. (2016). Migrating the internet to IPv6: An exploration of the when and why. IEEE/ACM Transactions on Networking, 24(4), 2291–2304. https://doi.org/10.1109/TNET.2015.2453338

    Article  Google Scholar 

  39. Jia, S. Y., Matthew, L., Bradley, H., Ahmed, E., Emile, A., Kimberly, C., & Amogh, D. (2019). Tracking the deployment of IPv6: Topology, routing and performance. Computer Networks, 165, 106947. https://doi.org/10.1016/j.comnet.2019.106947

    Article  Google Scholar 

  40. Neha, J., Ashish, P., & Aarti, J. (2021). Performance analysis of routing protocols on IPv4 and IPv6 addressing networks. Journal of Web Engineering, 20(5), 1389–1428. https://doi.org/10.13052/jwe1540-9589.2055

    Article  Google Scholar 

  41. Li, F. L., Wang, X. W., Pan, T., & Yang, J. H. (2017). A case study of IPv6 network performance: Packet delay, loss, and reordering. Mathematical Problems in Engineering, 4, 1–10. https://doi.org/10.1155/2017/3056475

    Article  Google Scholar 

  42. Li, K. H., & Wong, K. Y. (2021). Empirical analysis of IPv4 and IPv6 networks through dual-stack sites. Information, 12(6), 246. https://doi.org/10.3390/info12060246

    Article  Google Scholar 

  43. Sanjay, A., Balaji, R., Pushparaj, S. D., & Gopinath, P. (2019). Revisiting the performance of DNS queries on a DNS hierarchy testbed over dual-stack. The Computer Journal, 64(1), 843–859. https://doi.org/10.1093/comjnl/bxaa143

    Article  Google Scholar 

  44. Ayoub, B., Faycal, B., Fatima, E. L., Azeddine, K., Yousaf, K., & Mohamed, T. (2019). Automation of network simulation: Concepts related to IPv4 and IPv6 convergence. Procedia Computer Science, 155, 456–461. https://doi.org/10.1016/j.procs.2019.08.063

    Article  Google Scholar 

  45. Wang, X. N., Cheng, H. B., & Le, D. G. (2018). A routing scheme for connecting delay-sensitive urban vehicular networks to the IPv6-based internet. Telecommunication System, 69, 349–364. https://doi.org/10.1007/s11235-018-0443-3

    Article  Google Scholar 

  46. Sadettin, D., & Ibrahim, O. (2020). A priority-based queuing model approach using destination parameters for real-time applications on IPv6 networks. Turkish Journal of Electrical Engineering and Computer Sciences, 28(2), 727–742. https://doi.org/10.3906/elk-1904-123

    Article  Google Scholar 

  47. Vern, P. (1999). End-to-end internet packet dynamics. IEEE/ACM Transactions on Networking, 7(3), 277–292. https://doi.org/10.1109/90.779192

    Article  Google Scholar 

  48. Bradley, H., Marina, F., Daniel. J. P., David, M., & Claffy, K. (2002). Distance metrics in the internet. In IEEE international telecommunications symposium (pp.1–6). https://doi.org/10.14209/its.2002.603

  49. Liu, X., Wang, J. F., Jing, W., Jong, M. D., Tummers, J. S., & Zhao, H. (2018). Evolution of the internet AS-level topology: From nodes and edges to components. Chinese Physics B, 27(12), 120501. https://doi.org/10.1088/1674-1056/27/12/120501

    Article  Google Scholar 

  50. Zhang, G. Q., Bruno, Q., & Zhou, S. (2011). Phase changes in the evolution of the IPv4 and IPv6 AS-Level Internet topologies. Computer Communications, 34, 649–657. https://doi.org/10.1016/j.comcom.2010.06.004

    Article  Google Scholar 

  51. Witono,T., Yazid S. (2022). A review of Internet topology research at the autonomous system level. In Proceedings of sixth international congress on information and communication technology (vol. 235, pp. 581–598). https://doi.org/10.1007/978-981-16-2377-6_54

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 71771110, the Planning Research Foundation of Social Science of the Ministry of Education of China under Grant No. 16YJA630014, and the Basic Scientific Research Project of the Education Department of Liaoning Province (Surface Project) under Grant No. LJKZ1065.

Author information

Authors and Affiliations

Authors

Contributions

HT wrote the main manuscript text, KG made Supervision and XG prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kaihong Guo.

Ethics declarations

Conflict of interest

Authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Guo, K. & Guan, X. Statistical behavioral characteristics of network communication delay in IPv4/IPv6 Internet. Telecommun Syst 85, 679–698 (2024). https://doi.org/10.1007/s11235-024-01111-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-024-01111-y

Keywords

Navigation