Skip to main content
Log in

Towards a crop pest control system based on the Internet of Things and fuzzy logic

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Smart agriculture is an emerging concept that helps modern farm management using technologies such as the Internet of Things (IoT), robotics, drones, and artificial intelligence, so that this leads to an increase in the quantity and quality of farm products and optimization of human resources. Efforts have been made in the past to control pests and plant diseases, and this has led to an increase in agricultural products. Control and prevention of crop diseases is the least expensive method of pest control, which also has good results in reducing insect pests. This study develops a crop pest control system based on IoT technology, which includes two parts: (1) hardware as a plant protection machine, and (2) software as an information management system. Here, light trap technology and ozone sterilization are incorporated in the proposed system to control insect pests and diseases of agricultural crops. The information management system consists of IoT technology and a mobile app, which provides remote control capability. In this system, several IoT-based sensor devices are responsible for collecting environmental information in real time. The basic routing protocol for the system implementation is Open Shortest Path First . We present a fuzzy logic-based method for energy-aware routing. We proved the effectiveness of the proposed system through implementation on a greenhouse facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dong, Y., Xu, F., Liu, L., Du, X., Ren, B., Guo, A., & Zhu, Y. (2020). Automatic system for crop pest and disease dynamic monitoring and early forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4410–4418.

    Article  ADS  Google Scholar 

  2. Wang, L., She, A., & Xie, Y. (2023). The dynamics analysis of Gompertz virus disease model under impulsive control. Scientific Reports, 13(1), 10180.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao, Y., Niu, B., Wang, H., & Zhao, X. (2024). Event‐based adaptive resilient control for networked nonlinear systems against unknown deception attacks and actuator saturation. International Journal of Robust and Nonlinear Control. https://doi.org/10.1002/rnc.7231

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, S., Qi, P., Zhang, W., & He, X. (2022). Development and application of an intelligent plant protection monitoring system. Agronomy, 12(5), 1046.

    Article  Google Scholar 

  5. Salimian, M., Ghobaei-Arani, M., & Shahidinejad, A. (2021). Toward an autonomic approach for internet of things service placement using gray wolf optimization in the fog computing environment. Software Practice and Experience, 51(8), 1745–1772.

    Article  Google Scholar 

  6. Khayatnezhad, M., Fataei, E., & Imani, A. (2023). Integrated modeling of food–water–energy nexus for maximizing water productivity. Water Supply, 23(3), 1362–1374.

    Article  Google Scholar 

  7. Zhao, J., Sun, M., Pan, Z., Liu, B., Ostadhassan, M., & Hu, Q. (2022). Effects of pore connectivity and water saturation on matrix permeability of deep gas shale. Advances in Geo-Energy Research, 6(1), 54–68.

    Article  CAS  Google Scholar 

  8. Wu, C., Zhang, Y., Li, N., & Rezaeipanah, A. (2023). An intelligent fuzzy-based routing algorithm for video conferencing service provisioning in software defined networking. Telecommunication Systems. https://doi.org/10.1007/s11235-023-01044-y

    Article  Google Scholar 

  9. Li, Q. K., Lin, H., Tan, X., & Du, S. (2018). H∞ consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Transactions on Systems, Man, and Cybernetics Systems, 50(12), 4905–4918.

    Article  Google Scholar 

  10. Zhao, H., Zong, G., Wang, H., Zhao, X., & Xu, N. (2023). Zero-sum game-based hierarchical sliding-mode fault-tolerant tracking control for interconnected nonlinear systems via adaptive critic design. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3317902

    Article  Google Scholar 

  11. Huang, S., Zong, G., Zhao, N., Zhao, X., & Ahmad, A. M. (2024). Performance recovery-based fuzzy robust control of networked nonlinear systems against actuator fault: A deferred actuator-switching method. Fuzzy Sets and Systems, 480, 108858.

    Article  MathSciNet  Google Scholar 

  12. Guo, H., Gu, W., Khayatnezhad, M., & Ghadimi, N. (2022). Parameter extraction of the SOFC mathematical model based on fractional order version of dragonfly algorithm. International Journal of Hydrogen Energy, 47(57), 24059–24068.

    Article  CAS  Google Scholar 

  13. Szumigaj-Tarnowska, J., Szafranek, P., Uliński, Z., & Ślusarski, C. (2020). Efficiency of gaseous ozone in disinfection of mushroom growing rooms. Journal of Horticultural Research, 28(2), 91–100.

    Article  CAS  Google Scholar 

  14. Fujiwara, K., & Fujii, T. (2002). Effects of spraying ozonated water on the severity of powdery mildew infection on cucumber leaves. Ozone Science Engineering, 24(6), 463–469.

    Article  ADS  CAS  Google Scholar 

  15. Díaz-López, M., Siles, J. A., Ros, C., Bastida, F., & Nicolás, E. (2022). The effects of ozone treatments on the agro-physiological parameters of tomato plants and the soil microbial community. Science of the Total Environment, 812, 151429.

    Article  ADS  PubMed  Google Scholar 

  16. Landa Fernández, I. A., Monje-Ramirez, I., Ledesma, O., & de Velásquez, M. T. (2019). Tomato crop improvement using ozone disinfection of irrigation water. Ozone Science Engineering, 41(5), 398–403.

    Article  ADS  Google Scholar 

  17. Etemadi, M., Ghobaei-Arani, M., & Shahidinejad, A. (2021). A cost-efficient auto-scaling mechanism for IoT applications in fog computing environment: A deep learning-based approach. Cluster Computing, 24(4), 3277–3292.

    Article  Google Scholar 

  18. Zhao, H., Wang, H., Xu, N., Zhao, X., & Sharaf, S. (2023). Fuzzy approximation-based optimal consensus control for nonlinear multiagent systems via adaptive dynamic programming. Neurocomputing, 553, 126529.

    Article  Google Scholar 

  19. Wu, W., Zhang, L., Wu, Y., & Zhao, H. (2024). Adaptive saturated two-bit-triggered bipartite consensus control for networked MASs with periodic disturbances: a low-computation method. IMA Journal of Mathematical Control and Information. https://doi.org/10.1093/imamci/dnae002

    Article  Google Scholar 

  20. Zhao, Y., Liang, H., Zong, G., & Wang, H. (2023). Event-based distributed finite-horizon H∞ consensus control for constrained nonlinear multiagent systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2023.3318525

    Article  Google Scholar 

  21. Zhao, H., Zong, G., Zhao, X., Wang, H., Xu, N., & Zhao, N. (2023). Hierarchical sliding-mode surface-based adaptive critic tracking control for nonlinear multiplayer zero-sum games via generalized fuzzy hyperbolic models. IEEE Transactions on Fuzzy Systems, 31(11), 4010–4023.

    Article  ADS  Google Scholar 

  22. Tu, H., Tang, N., Hu, X., Yao, Z., Wang, G., & Wei, H. (2016). LED multispectral circulation solar insecticidal lamp application in rice field. Transactions of the Chinese Society of Agricultural Engineering, 32(16), 193–197.

    Google Scholar 

  23. Bian, L., Cai, X. M., Luo, Z. X., Li, Z. Q., & Chen, Z. M. (2018). Decreased capture of natural enemies of pests in light traps with light-emitting diode technology. Annals of Applied Biology, 173(3), 251–260.

    Article  Google Scholar 

  24. de Carvalho, M. W., Hickel, E. R., Bertoldi, B., Knabben, G. C., & Novaes, Y. R. D. (2021). Design of a smart LED lamp to monitor insect populations in an integrated pest management approach. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 270–276.

    Article  Google Scholar 

  25. Wang, H., Ren, H., Han, K., Li, G., Zhang, L., Zhao, Y., & Liu, P. (2023). Improving the net energy and energy utilization efficiency of maize production systems in the North China plain. Energy, 274, 127340.

    Article  Google Scholar 

  26. Lam, H. B., Phan, T. T., Vuong, L. H., Huynh, H. X., & Pottier, B. (2013). Designing a brown planthoppers surveillance network based on wireless sensor network approach. arXiv preprint arXiv:1312.3692.

  27. Wang, T., Zhang, L., Xu, N., & Alharbi, K. H. (2023). Adaptive critic learning for approximate optimal event-triggered tracking control of nonlinear systems with prescribed performances. International Journal of Control. https://doi.org/10.1080/00207179.2023.2250880

    Article  Google Scholar 

  28. Berahmand, K., Mohammadi, M., Sheikhpour, R., Li, Y., & Xu, Y. (2023). WSNMF: Weighted symmetric nonnegative matrix factorization for attributed graph clustering. Neurocomputing, 566, 127041.

    Article  Google Scholar 

  29. Gao, D., Sun, Q., Hu, B., & Zhang, S. (2020). A framework for agricultural pest and disease monitoring based on Internet-of-Things and unmanned aerial vehicles. Sensors, 20(5), 1487.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Li, L., & Yao, L. (2023). Fault tolerant control of fuzzy stochastic distribution Systems with packet dropout and time delay. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3266065

    Article  Google Scholar 

  31. Zhong, Y., Chen, L., Dan, C., & Rezaeipanah, A. (2022). A systematic survey of data mining and big data analysis in internet of things. The Journal of Supercomputing, 78(17), 18405–18453.

    Article  Google Scholar 

  32. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., & Zou, Q. (2022). webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Research, 50(D1), D1123–D1130.

    Article  CAS  PubMed  Google Scholar 

  33. Yue, S., Niu, B., Wang, H., Zhang, L., & Ahmad, A. M. (2023). Hierarchical sliding mode-based adaptive fuzzy control for uncertain switched under-actuated nonlinear systems with input saturation and dead-zone. Robotic Intelligence and Automation, 43(5), 523–536.

    Article  Google Scholar 

  34. Jannesari, V., Keshvari, M., & Berahmand, K. (2023). A novel nonnegative matrix factorization-based model for attributed graph clustering by incorporating complementary information. Expert Systems with Applications, 242, 122799.

    Article  Google Scholar 

  35. Luo, J., Zhao, C., Chen, Q., & Li, G. (2022). Using deep belief network to construct the agricultural information system based on Internet of Things. The Journal of Supercomputing, 78(1), 379–405.

    Article  Google Scholar 

  36. Zhang, H., Zou, Q., Ju, Y., Song, C., & Chen, D. (2022). Distance-based support vector machine to predict DNA N6-methyladenine modification. Current Bioinformatics, 17(5), 473–482.

    Article  CAS  Google Scholar 

  37. Gong, J., & Rezaeipanah, A. (2023). A fuzzy delay-bandwidth guaranteed routing algorithm for video conferencing services over SDN networks. Multimedia Tools and Applications, 82, 25585–25614.

    Article  Google Scholar 

  38. Cao, Y., Xu, N., Wang, H., Zhao, X., & Ahmad, A. M. (2023). Neural networks-based adaptive tracking control for full-state constrained switched nonlinear systems with periodic disturbances and actuator saturation. International Journal of Systems Science, 54(14), 2689–2704.

    Article  MathSciNet  Google Scholar 

  39. Xue, B., Yang, Q., Xia, K., Li, Z., Chen, G. Y., Zhang, D., & Zhou, X. (2022). An AuNPs/mesoporous NiO/nickel foam nanocomposite as a miniaturized electrode for heavy metal detection in groundwater. Engineering. https://doi.org/10.1016/j.eng.2022.06.005

    Article  Google Scholar 

  40. Zhang, J., Khayatnezhad, M., & Ghadimi, N. (2022). Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African vulture optimization algorithm. Energy Sources Part A Recovery Utilization and Environmental Effects, 44(1), 287–305.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Xuhui Wang.

Ethics declarations

Conflict of interest

There is no free code for this study.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jannesari, V. Towards a crop pest control system based on the Internet of Things and fuzzy logic. Telecommun Syst 85, 665–677 (2024). https://doi.org/10.1007/s11235-024-01106-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-024-01106-9

Keywords

Navigation