Skip to main content
Log in

A review of channel coding schemes in the 5G standard

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The channel in a communication system is usually affected by noise, so channel coding is employed to avoid contamination of data due to noise. Channel coding is a significant and persuasive part of cellular communication systems, which increases the reliability of data transmission by detecting and correcting errors generated in the data while passing through the channel. The fourth generation standard can't achieve desired channel capacity and latency due to its high error floor, which is a challenge. For fifth generation (5G), two different channel coding techniques have been chosen by third generation partnership project for error-free data transmission. In the 5G standard, the data and control channels use low-density parity check (LDPC) and polar codes, respectively, due to their inherent benefits. This paper broadly surveys channel coding techniques varying code rate (R), codeword (N) and message (K) bits for encoding and list size (L) and iterations in decoding for 5G standards. The MATLAB-based simulation helps to find the best channel for the 5G standard considering the bit error rate (BER) and channel capacity performance among additive white Gaussian noise (AWGN), Rayleigh and Rician channels for different channel coding and modulation techniques. The Monte-Carlo simulation shows that the LDPC codes with higher iteration and polar codes with larger list sizes achieve better BER performance keeping the code rate and modulation order lower for the AWGN channel. The simulation findings demonstrate that the distributed cyclic redundancy check successive cancellation list polar decoder outperforms the LDPC min-sum decoder without offset (N = 1024, K = 512, iteration or L = 16) but with offset it enhances LDPC’s BER performance making it suitable for even shorter N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Pratap, K., & Ranjay, H. (2021). An efficient channel and power allocation scheme for D2D enabled cellular communication system: An IoT application. IEEE Sensors Journal, 21(1), 25340–25351.

    Google Scholar 

  2. Yanming, L., et al. (2021). Resource allocation and 3D placement for UAV-enabled energy-efficient IoT communications. IEEE Internet of Things Journal, 8(3), 1322–1333.

    Article  Google Scholar 

  3. Ramraj, D., et al. (2021). Study and investigation on 5G technology: A systematic review. MDPI Journal of Sensors, 22(1), 1–32.

    Google Scholar 

  4. Pekka, P. (2014). A brief overview of 5G research activities. In 1st international conference on 5G for ubiquitous connectivity, Akaslompolo, Finland (pp. 17–22).

  5. Muhammad, J. S., et al. (2021). 5G networks towards smart and sustainable cities: A review of recent developments, applications, and future perspectives. IEEE Access, PP(99), 1–1.

    Google Scholar 

  6. Xiaohang, L., Chih-Chun, W., & Xiaojun, L. (2010). Throughput and delay analysis on uncoded and coded wireless broadcast with hard deadline constraints. In 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA (pp. 1–5).

  7. Peter, S. (2002). Error control coding from theory to practice (1st ed.). Wiley.

    Google Scholar 

  8. Emtithal, A. T., & Ryuji, K. (2014). Dependable medical network based on 2G and 3G cellular mobile standards with external channel code in concatenated code structure. International Journal of Computer and Communication Engineering, 3(4), 244–247.

    Article  Google Scholar 

  9. Harri, H., & Antti, T. (2010). WCDMA for UMTS: HSPA evolution and LTE (5th ed.). Wiley.

    Google Scholar 

  10. Felipe, A. P. F., et al. (2013). LTE-advanced channel coding generic procedures a high-level model to guide low-level implementations. Wireless Telecommunications Symposium (WTS), 2013, 1–7.

    Google Scholar 

  11. Borko, F., & Syed, A. A. (2009). Long term evolution: 3GPP LTE radio and cellular technology, chapter 3 (1st ed.). CRC Press.

    Google Scholar 

  12. Aarti, S., & Mohammad, S. (2017). Polar code: The channel code contender for 5G scenarios. In 2017 IEEE international conference on computer, communications and electronics, Jaipur, India (pp. 676–682).

  13. Shuai, S., et al. (2019). Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Communications Surveys and Tutorials, 21(3), 2309–2333.

    Article  Google Scholar 

  14. Mustafa, S. A., et al. (2023). A comparative study on channel coding scheme for underwater acoustic communication. Bulletin of Electrical Engineering and Informatics, 12(1), 176–186.

    Article  Google Scholar 

  15. Ming, Z., et al. (2018). Channel coding for high-performance wireless control in critical applications: Survey and analysis. IEEE Access, 6(1), 29648–29664.

    Google Scholar 

  16. Thibaud, T., et al. (2016). Lowering the error floor of turbo codes with CRC verification. IEEE Wireless Communications Letters, 5(4), 404–407.

    Article  Google Scholar 

  17. Onurcan, I., Diego, L., & Wen, X. (2016). A comparison of channel coding schemes for 5G short message transmission. IEEE Globecom Workshops, 2016, 1–6.

    Google Scholar 

  18. Salima, B., Abdelmounaim, M. L., & Ridha, I. B. (2021). Performance comparison of channel coding schemes for 5G massive machine type communications. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 294–300.

    Google Scholar 

  19. Kun, Z., & Zhanji, W. (2020). Comprehensive Study on CC-LDPC, BC-LDPC and Polar Code. In 2020 IEEE wireless communications and networking conference workshops (WCNCW), Seoul, Korea (pp. 1–6).

  20. ETSI EN300909 Version 8.5.1. (2000). Digital cellular telecommunications system (Phase 2+); channel coding.

  21. Volker, F. (2000). Turbo-detection for GSM-systems—channel estimation, equalization, and decoding. Ph.D. thesis.

  22. Naga, K., Murali, B., Sk, S. S., & Poorna, A. (2019). FPGA based convolutional encoder for GSM-900 architecture. International Journal of Innovative Technology and Exploring Engineering, 8(4), 642–650.

    Google Scholar 

  23. Fatima, L. P. D., Antonio, A. F. L., Leonardo, B. O., & Claudio, M. S. V. (2002). GPRS systems performance analysis. In International telecommunications symposium, Natal, Brazil.

  24. Peter, R. (2006). Mobile broadband: EDGE, HSPA, LTE (3–39). 3G Americas, white paper.

  25. Sadayuki, A., & Hisashi, K. (2002). Performance of very low-rate channel coding in W-CDMA reverse link. In 13th IEEE international symposium on personal, indoor and mobile radio communications (pp. 961–965).

  26. 3GPP2v2. (2004). Physical layer standard for cdma2000 spread spectrum systems.

  27. Ramasamy, K., Balamuralithara, B., & Mohammad, U. S. (2006). A new class of asymmetric turbo code for 3G systems. AEU International Journal of Electronics and Communications, 60(6), 447–458.

    Article  Google Scholar 

  28. Balakrishnan, B., & Kalpana, S. (2008). An investigation of code matched interleaved for 3G turbo code systems. Journal of Applied Sciences, 8(10), 1972–1976.

    Article  Google Scholar 

  29. Bernard, S. (2001). Digital communications: fundamentals and applications (2nd ed.). Pearson Prentice Hall.

    Google Scholar 

  30. Opeoluwa, T. E., et al. (2018). From 1G to 5G, what next? IAENG International Journal of Computer Science, 45(3), 413–434.

    Google Scholar 

  31. Mischa, S. (2005). Mobile wireless communications. Cambridge University Press.

    Google Scholar 

  32. Dhruv, S. T., Krishnakant, N., & Rohini, P. (2013). Evolution of high-speed download packet access (HSDPA) networks. International Journal of Engineering Research and Technology (IJERT), 2(11), 2183–2186.

    Google Scholar 

  33. Evgenii, K. (2011). Modulation and coding techniques in wireless communications. Wiley.

    Google Scholar 

  34. Arunabha, G. (2018). Fundamentals of LTE/GSM technology, chapter 1 (1st ed., pp. 1–43). Pearson Education.

    Google Scholar 

  35. Mustafa, E., & Roger, H. (2009). Sets of rate-compatible universal turbo codes nearly optimized over various rates and interleaver sizes. United States patent. http://patents.google.com/patent/US20150249472A1/en

  36. TRAI. (2018). Evolution of mobile communications (1G, 2G, and 3G)—Part I. Technology Digest Bulletin of Telecom Technology.

  37. Dung, N. D., Jack, K. W., & Yongbin, W. (2013). Tail-biting convolutional decoding. United States patent. https://patents.google.com/patent/US8548102

  38. Mohammed, J., & Zouhair, G. (2010). Wireless mobile evolution to 4G network. Journal of Wireless Sensor Network, 2(4), 309–317.

    Article  Google Scholar 

  39. 3GPP TS 36.212. (2018). LTE; evolved universal terrestrial radio access (E-UTRA); multiplexing and channel coding.

  40. TRAI. (2013). LTE (advanced).

  41. Vinoth, P., & Jayakumar, P. (2013). A survey on modulation schemes used for link adaptation in WiMAX networks’. International Journal of Computer Applications, 73(4), 18–23.

    Article  Google Scholar 

  42. Shuang, S., & Biju, I. (2014). Analysis of WiFi and WiMAX and wireless network coexistence. International Journal of Computer Networks and Communications, 6(6), 63–78.

    Article  Google Scholar 

  43. Zahraa, R. M. H., et al. (2019). Channel coding scheme for 5G mobile communication system for short length message transmission. Journal of Wireless Personal Communications, 2019(106), 377–400.

    Google Scholar 

  44. Bae, J. H., et al. (2019). An overview of channel coding for 5G NR cellular communications. APSIPA Transactions on Signal and Information Processing, 8(17), 1–14.

    Google Scholar 

  45. Salima, B., Abdelmounaim, M. L., & Ridha, I. B. (2021). Performance comparison of channel coding schemes for 5G massive machine type communications. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 902–908.

    Article  Google Scholar 

  46. Zunaria, B., et al. (2020). Polar codes and their quantum-domain counterparts. IEEE Communications Surveys and Tutorials, 22(1), 123–155.

    Article  Google Scholar 

  47. Deepak, K. C., & Md, K. (2015). Evaluation of SNR for AWGN, Rayleigh and Rician fading channels under DPSK modulation scheme with constant BER. International Journal of Wireless Communications and Mobile Computing, 3(1), 7–12.

    Article  Google Scholar 

  48. Deergha, K. R. (2015). Channel coding techniques for wireless communications, chapter 1 (2nd ed., pp. 1–20). Springer.

    Book  Google Scholar 

  49. Nuzhat, T. A. (2012). Effect of AWGN & Fading (Raleigh & Rician) channels on BER performance of a WiMAX communication system. International Journal of Computer Science and Information Security, 10(8), 11–17.

    Google Scholar 

  50. Nitha, V. P., & Sukesh, K. A. (2014). BER performance evaluation of different digital modulation schemes for biomedical signal transceivers under AWGN and fading channel conditions. International Journal of Engineering and Advanced Technology (IJEAT), 3(5), 212–215.

    Google Scholar 

  51. Md Golam, S. (2015). Bit error rate (BER) comparison of AWGN channels for different type’s digital modulation using MATLAB simulink. American Scientific Research Journal for Engineering, Technology, and Sciences ASRJETS, 13(1), 61–71.

    Google Scholar 

  52. Mousa, K. W., Rashid, A. F., & Doaa, Y. A. (2017). Performance of AWGN and fading channels on wireless communication systems using several techniques. International Journal of Wireless Communications and Networking Technologies, 6(3), 19–23.

    Google Scholar 

  53. Mac, E. V. V., & Wendy, M. M. (2001). Radio, electronics, computers and communications, chapter 25 (9th ed., pp. 3–27). Elsevier.

    Google Scholar 

  54. Zeynep, B. K. E., et al. (2019). The development, operation and performance of the 5G polar codes. IEEE Communications Surveys & Tutorials, 22(1), 96–122.

    Google Scholar 

  55. 3GPP TS 38.212 Version 16.3.0. (2020). 5G; NR; multiplexing and channel coding. ETSI.

  56. Robert, G. G. (1963). Low-density parity-check codes, Ph.D. thesis.

  57. Zongjie, T., & Shiyoung, Z. (2007). Overview of LDPC codes. In 7th international conference on computer and information technology, Wakamatsu, Japan (pp. 469–474).

  58. ETSI TS 138 212 Version 15.2.0. (2018). 5G; NR; multiplexing and channel coding. ETSI.

  59. Hao, W., & Huayong, W. (2019). A high throughput implementation of QC-LDPC codes for 5G NR. IEEE Access, 7(1), 185373–185384.

    Google Scholar 

  60. Jincheng, D., et al. (2021). Learning to decode protograph LDPC codes. IEEE Journal on Selected Areas in Communications, 39(7), 1–16.

    Google Scholar 

  61. Tom, R., & Shrinivas, K. (2018). Design of low-density parity check codes for 5G new radio. IEEE Communications Magazine, 56(3), 28–34.

    Article  Google Scholar 

  62. Chong, Z., Xijin, M., Jinhong, Y., & Huaan, L. (2021). Construction of multi-rate quasi-cyclic LDPC codes for satellite communications. IEEE Transactions on Communications, 69(11), 7154–7166.

    Article  Google Scholar 

  63. Fatemeh, H. S., Ajit, N., & Gregory, E. (2018). Analysis of 5G LDPC codes rate-matching design. In 2018 IEEE 87th vehicular technology conference (VTC Spring), Porto, Portugal (pp. 1–5).

  64. Vladimir, L. P., Dragomir, M. E. M., & Andreja, R. (2021). Flexible 5G new radio LDPC encoder optimized for high hardware usage efficiency. MDPI Journal of Electronics, 10(9), 1–24.

    Google Scholar 

  65. Zongjie, T., & Shiyong, Z. (2007). Overview of LDPC codes. In Seventh international conference on computer and information technology (pp. 469–474).

  66. Ezmin, A., & Azlina, I. (2015). Comparison between LDPC codes and QC-LDPC codes in term of PAPR in OFDM system with different encoding techniques. In 2015 IEEE 6th control and system graduate research colloquium, Shah Alam, Malaysia (pp. 23–26).

  67. Tram, T. B. N., Tuy, N. T., & Hanho, L. (2019). Efficient QC-LDPC encoder for 5G new radio. MDPI Journal of Electronics, 8(6), 1–15.

    Google Scholar 

  68. Hangxuan, C., et al. (2021). Design of high-performance and area-efficient decoder for 5G LDPC codes. IEEE Transactions on Circuits and Systems-I: Regular Papers, 68(2), 879–891.

    Article  Google Scholar 

  69. Waheed, U., & Abid, Y. (2015). Comprehensive algorithmic review and analysis of LDPC codes. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 111–130.

    Google Scholar 

  70. Yinchu, W., Ming, J., & Xiao, M. (2021). Transmitting extra bits with cyclically shifted LDPC codes. IEEE Wireless Communications Letters, 10(12), 2824–2827.

    Article  Google Scholar 

  71. Ahmed, A. E., & Maha, E. (2014). Simplified variable-scaled min sum LDPC decoder for irregular LDPC codes. In 2014 IEEE 11th consumer communications and networking conference, Las Vegas, NV, USA (pp. 518–523).

  72. Nam-Il, K. I. M., Seung-Que, L., Jin-Up, K. I. M. (2020). A modified min sum decoding algorithm based on approximation enhancement for LDPC codes. In 2020 international conference on information and communication technology convergence (ICTC), Jeju, Korea (pp. 1407–1410).

  73. Pavithra, G., & Naveen, K. M. (2015). BER performance comparison of bit flipping algorithms used for decoding of LDPC codes. International Journal of Engineering Research and Technology (IJERT), 4(5), 1–5.

    Google Scholar 

  74. Junho, C., & Wonyong, S. (2010). Adaptive threshold technique for bit-flipping decoding of low-density parity-check codes. IEEE Communications Letters, 14(9), 857–859.

    Article  Google Scholar 

  75. Tso-Cho, C. (2012). An efficient bit-flipping decoding algorithm for LDPC codes. In 2012 Cross-strait quad-regional radio science and wireless technology conference, New Taipei, Taiwan (pp. 109–112).

  76. Nejwa, E. L. M., Seddik, B., & Jaouad, F. (2018). Layered offset min-sum decoding for low-density parity check codes. International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2018, 1–5.

    Google Scholar 

  77. Mohammad, R. I., Dewan, S. S., Muhammad, M. A. F., & Imran, R. (2011). Optimized min-sum decoding algorithm for low-density parity check codes. International Journal of Advanced Computer Science and Applications, 2(12), 168–174.

    Google Scholar 

  78. Huan, L., Jing, G., Chen, G., & Donglin, W. (2017). A low-complexity min-sum decoding algorithm for LDPC codes. In 17th IEEE international conference on communication technology (pp. 102–105).

  79. Jérémy, N., & Amer, B. (2021). Parallel and flexible 5G LDPC decoder architecture targeting FPGA. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 29(6), 1141–1151.

    Article  Google Scholar 

  80. Jin, X., Liuguo, Y., Ning, G., & Jianhua, L. (2009). Improved layered min-sum decoding algorithm for low-density parity check codes. In 9th WSEAS international conference on multimedia systems & signal processing (pp. 102–107).

  81. Anuj, V., & Rahul, S. (2020). A new VLSI architecture of next-generation QC-LDPC decoder for 5G new-radio wireless-communication standard. In 2020 IEEE international symposium on circuits and systems (ISCAS).

  82. Erdal, A. (2009). Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7), 3051–3073.

    Article  Google Scholar 

  83. Zeynep, B. K. E., Luping, X., Robert, G. M., & Lajos, H. (2019). The development, operation, and performance of the 5G polar codes. IEEE Communications Surveys & Tutorials, 22(1), 96–122.

    Google Scholar 

  84. Valerio, B., Carlo, C., & Ingmar, L. (2020). Design of polar codes in 5G new radio. IEEE Communications Surveys and Tutorials, 23(1), 29–40.

    Google Scholar 

  85. Erdal, A. (2011). Systematic polar coding. IEEE Communications Letters, 15(8), 860–862.

    Article  Google Scholar 

  86. Ming, Y., & Hui, L. (2018). A performance comparison of systematic polar codes and non-systematic polar codes.In International conference on mathematics, modelling, simulation and algorithms (pp. 254–256).

  87. Hoyoung, Y., & In-Cheol, P. (2015). Partially parallel encoder architecture for long polar codes. IEEE Transactions on Circuits and Systems—II: Express Briefs, 62(3), 306–310.

    Article  Google Scholar 

  88. Wei, S., Yifei, S., Liping, L., Kai, N., & Chuan, Z. (2020). A general construction and encoder implementation of polar codes. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 28(7), 1690–1702.

    Article  Google Scholar 

  89. Harish, V., Yi, H., & Emanuele, V. (2016). Efficient algorithms for systematic polar encoding. IEEE Communications Letters, 20(1), 17–21.

    Article  Google Scholar 

  90. Xiumin, W., Zhihong, Z., Jun, L., Yu, W., Haiyan, C., Zhengquan, L., & Liang, S. (2019). An optimized encoding algorithm for systematic polar codes. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–12.

    Google Scholar 

  91. Orion, A., Alexios, B. S., & Andreas, B. (2014). A low-complexity improved successive cancellation decoder for polar codes. In 2014 48th Asilomar conference on signals, systems and computers, CA, USA (pp. 2116–2120).

  92. Seyyed, A. H., Carlo, C., & Warren, J. G. (2016). Simplified successive-cancellation list decoding of polar codes. In IEEE international symposium on information theory.

  93. Bo, Y., & Keshab, K. P. (2014). Successive cancellation list polar decoder using log-likelihood ratios. In 2014 48th Asilomar conference on signals, systems and computers, CA, USA (pp. 548–552).

  94. Kai, N., & Kai, C. (2012). CRC-aided decoding of polar codes. IEEE Communications Letters, 16(10), 1668–1671.

    Article  Google Scholar 

  95. Bin, L., Hui, S., & David, T. (2012). An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Communications Letters, 16(12), 2044–2047.

    Article  Google Scholar 

  96. Junmei, Y., et al. (2015). Low-complexity adaptive successive cancellation list polar decoder based on relaxed sorting. In 2015 International conference on wireless communications & signal processing, Nanjing, China (pp. 1–5).

  97. Xiumin, W., et al. (2019). Improved adaptive successive cancellation list decoding of polar codes. MDPI Journal of Entropy, 21(9), 1–13.

    Google Scholar 

  98. Walled, A., & Abdulkareem, A. K. (2021). Adaptive reduced paths successive cancellation list decoding for polar codes. Iraqi Journal of Information and Communications Technology (IJICT), 4(1), 19–31.

    Article  Google Scholar 

  99. Syed, M. A., Youzhe, F., & Chi, Y. T. (2017). High-throughput and energy-efficient belief propagation polar code decoder. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 25(3), 1098–1111.

    Article  Google Scholar 

  100. Sungkwon, H., & Jong-Moon, C. (2021). Improved CRC aided BP decoding for polar codes. Electronics Letters, 57(13), 526–528.

    Article  Google Scholar 

  101. Ahmet, C. A., & Orhan, G. (2021). A survey on belief propagation decoding of polar codes. China Communications, 18(8), 133–168.

    Article  Google Scholar 

  102. Huazi, Z., et al. (2018). Parity-check polar coding for 5G and beyond. In 2018 IEEE international conference on communications (ICC), MO, USA (pp. 1–7).

  103. Fengyi, C., et al. (2019). CRC-aided parity-check polar coding. IEEE Access, 7(1), 155574–155583.

    Google Scholar 

  104. Jacob, K., et al. (2022). CRC-aided list decoding of convolutional and polar codes for short messages in 5G. In IEEE international conference on communications (pp. 9–97).

  105. Dennis, H., Michael, B., & Yufei, B. (2018). Interleaved CRC for polar codes'. In 2018 IEEE 87th vehicular technology conference (VTC), Porto, Portugal (pp. 1–5).

  106. Haseong, K. H., & LeeHosung, P. (2021). Distributed CRC scheme for low-complexity successive cancellation flip decoding of polar codes. ICT Express, 8(3), 409–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Design and analysis were performed by Navin Kumar. The first draft of the manuscript was written by Navin Kumar. Dr Deepak Kedia helped to improve the quality of the manuscript. Dr Gaurav Purohit helped to carried out the MATLAB simulation and code verification. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Navin Kumar .

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar , N., Kedia, D. & Purohit, G. A review of channel coding schemes in the 5G standard. Telecommun Syst 83, 423–448 (2023). https://doi.org/10.1007/s11235-023-01028-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01028-y

Keywords

Navigation