Skip to main content

Advertisement

Log in

Performance analysis of hybrid half and full duplex user relaying non orthogonal multiple access system with advanced successive interference cancellation

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper describes a hybrid half duplex (HD) and full duplex (FD) user relaying cooperative non orthogonal multiple access (NOMA) system, where a HD/FD user relaying node shares the information to far users from base station (BS). The system works under residual self-interference (RSI) due to imperfect self-interference cancellation. An advanced successive interference cancellation (ASIC) scheme is introduced in the system as an alternative of successive interference cancellation (SIC) technique. The implementation of ASIC scheme in the proposed system is done by mapping the received signal into number of subgroups. Then, the conventional SIC technique is applied to each of these subgroups for decoding information signals. The performance analysis of the proposed system is comprehensively conducted through the closed form expressions, which are derived in terms of outage probability, system throughput, achievable sum rate and energy efficiency. The effectiveness and correctness of the proposed system is verified by analytical results, which clearly boost the outage performance and system throughput than traditional system in moderate to high SNR region. The robustness of the proposed system is also provided with high achievable sum rate and energy efficiency than traditional system under RSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author on reasonable request.

Code Availability

The code generated during the current research work are available from the corresponding author on reasonable request.

References

  1. Luo, Q., Gao, P., Liu, Z., Xiao, L., Mheich, Z., Xiao, P., & Marref, A. (2021). An error rate comparison of power domain non-orthogonal multiple access and sparse code multiple access. IEEE Open Journal of Communication Society, 2(500–511), 2021. https://doi.org/10.1109/OJCOMS.2021.3064504

    Article  Google Scholar 

  2. Patel, S., Chauhan, D., & Gupta, S. (2021). An overview of non orthogonal multiple access for future radio communication. In International conference on intelligent technologies, Hubli, India.https://doi.org/10.1109/CONIT51480.2021.9498336

  3. Ghosh, J., Ra, I.-H., Singh, S., Haci, H., & Al-Utabi, K. (2022). On the comparison of optimal NOMA and OMA in a paradigm shift of emerging technologies. IEEE Access, 10, 11616–11632. https://doi.org/10.1109/ACCESS.2022.3146349

    Article  Google Scholar 

  4. Baghani, M., Parsaeefard, S., Derakhshani, M., & Saad, W. (2019). Dynamic non-orthogonal multiple access and orthogonal multiple access in 5G wireless networks. IEEE Transactions on Communication, 67(9), 6360–6373. https://doi.org/10.1109/TCOMM.2019.2919547

    Article  Google Scholar 

  5. Jaafar, W., Naser, S., Muhaidat, S., Sofotasios, P. C., & Yanikomeroglu, H. (2020). Multiple access in aerial networks: From orthogonal and non-orthogonal to rate-splitting. IEEE Open Journal of Vehicular Technology, 1, 372–392. https://doi.org/10.1109/OJVT.2020.3032844

    Article  Google Scholar 

  6. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communication Magazine, 55(2), 185–191. https://doi.org/10.1109/MCOM.2017.1500657CM

    Article  Google Scholar 

  7. Shahen Shah, A. F. M., Qasim, A. N., Karabulut, M. A., Iihan, H., & Islam, M. B. (2021). Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access, 9, 113428–113442. https://doi.org/10.1109/ACCESS.2021.3104509

    Article  Google Scholar 

  8. Ding, Z., Yang, Z., Fan, P., Member, S., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505. https://doi.org/10.1109/LSP.2014.2343971

    Article  Google Scholar 

  9. Kara, F., & Kaya, H. (2018). Performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Communication, 12(15), 1834–1844.

    Article  Google Scholar 

  10. Hasan, M. K., Sshahjalal, M., & Mainul, M. (2020). the role of deep learning in NOMA for 5G and beyond communications. In International conference on artificial intelligence in information and communication, Fukuoka, Japan.https://doi.org/10.1109/ICAIIC48513.2020.9065219

  11. Ozduran, V. (2018). Advanced successive interference cancellation for non-orthogonal multiple Access. 26th Telecommunications Forum, Belgrade, Serbia. https://doi.org/10.1109/TELFOR.2018.8612111

  12. Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communication Letters, 19(11), 2037–2040. https://doi.org/10.1109/LCOMM.2015.2474856

    Article  Google Scholar 

  13. Ding, Z., Peng, M., & Poor, H. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 19(8), 1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064

    Article  Google Scholar 

  14. Kim, J. B., & Lee, I. H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communication Letters, 19(11), 1949–1952. https://doi.org/10.1109/LCOMM.2015.2472414

    Article  Google Scholar 

  15. Men, J., Ge, J., & Zhang, C. (2017). Performance analysis of non-orthogonal multiple access for relaying networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208. https://doi.org/10.1109/TVT.2016.2555399

    Article  Google Scholar 

  16. Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communication Magazine, 53(5), 128–137. https://doi.org/10.1109/MCOM.2015.7105651

    Article  Google Scholar 

  17. Ju, H., Oh, E., & Hong, D. (2009). Improving efficiency of resource usage in two-hop full duplex relay systems based on resource sharing and interference cancellation. IEEE Transactions Wireless Communication, 8(8), 3933–3938. https://doi.org/10.1109/TWC.2009.081049

    Article  Google Scholar 

  18. Duarte, M., Dick, C., & Sabharwal, A. (2012). Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 11(12), 4296–4307. https://doi.org/10.1109/TWC.2012.102612.111278

    Article  Google Scholar 

  19. Rodriguez, L. J., Tran, N., & Le-Ngoc, T. (2014). Performance of full duplex AF relaying in the presence of residual self-interference. IEEE Journal on Selected Areas in Communications, 32(9), 1752–1764. https://doi.org/10.1109/JSAC.2014.2330151

  20. Wang, Q., Dong, Y., Xu, X., & Tao, X. (2015). Outage probability of full-duplex AF relaying with processing delay and residual self-interference. IEEE Communication Letters, 19(5), 783–786. https://doi.org/10.1109/LCOMM.2015.2411596

  21. Kwon, T., Lim, S., Choi, S., & Hong, D. (2010). Optimal duplex mode for DF relay in terms of the outage probability. IEEE Transactions on Vehicular Technologies, 59(7), 3628–3634. https://doi.org/10.1109/TVT.2010.2050503

    Article  Google Scholar 

  22. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technologies, 66(5), 4467–4471. https://doi.org/10.1109/TVT.2016.2600102

    Article  Google Scholar 

  23. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575. https://doi.org/10.1109/TCOMM.2017.2749400

    Article  Google Scholar 

  24. Zhang, L., Liu, J., Xiao, M., Wu, G., Liang, Y. C., & Li, S. (2017). Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE Journal on Selected Areas in Communications, 35(10), 2398–2412. https://doi.org/10.1109/JSAC.2017.2724678

    Article  Google Scholar 

  25. Le, Q. N., Yadav, A., Nguyen, N.-P., Dobre, O. A., & Zhao, R. (2021). Full-duplex non-orthogonal multiple access cooperative overlay spectrum-sharing networks with SWIPT. IEEE Transactions on Green Communications and Networking, 5(2), 322–334. https://doi.org/10.1109/TGCN.2020.3036026

    Article  Google Scholar 

  26. Alharbi, T. E. A., Shen, K. Z., & Danial, K. C. (2020). Full-duplex cooperative non-orthogonal multiple access system with feasible successive interference cancellation. In Vehicular technology conference, Antwerp, Belgium.https://doi.org/10.1109/VTC2020-Spring48590.2020.9129033

  27. Abbasi, O., Ebrahimi, A., & Mokari, N. (2019). NOMA inspired cooperative relaying system using an AF relay. IEEE Wireless Communication Letters, 8(1), 261–264. https://doi.org/10.1109/LWC.2018.2869592

    Article  Google Scholar 

  28. Jiang, H., Shen, B., Dong, K., & Xu, H. (2021). Performance analysis of full duplex cooperative NOMA system with imperfect SIC. In IEEE Vehicular Technology Conference, Norman, OK, USA. https://doi.org/10.1109/VTC2021-Fall52928.2021.9625322

  29. Pei, X., Wen, M., Mumtaz, S., Otaibi, S. A., & Guiza, M. (2020). NOMA-based coordinated direct and relay transmission with a half-duplex/full-duplex relay. IEEE Transactions on communications, 68(11), 6750–6760. https://doi.org/10.1109/TCOMM.2020.3017002

    Article  Google Scholar 

Download references

Funding

This research work has received no specific funds and grants from any funding agency during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Hussain Alvi.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: proof of proposition 1

For deriving the result of (19), the outage probability of user \(D_1\) can be evaluated as

$$\begin{aligned} P_{D1}^{FD}&= 1 - P \biggl ( r_{1,1}>R_1 r_{1,2}>R_2 r_{1,3}>R_3 \biggr )&\nonumber \\&= 1 - P\biggl (\frac{a_1P|h_s{_r}|^2}{\frac{V}{2}+\frac{N_0}{2}}>\gamma _{th1} \frac{a_2 P |h_s{_r}|^2}{\frac{V}{2}+\frac{N_0}{2}}>\gamma _{th2} \nonumber \\ {}& \frac{a_3P|h_s{_r}|^2}{a_1P|h_s{_r}|^2+\frac{V}{2}+\frac{N_0}{2}}>\gamma _{th3}\biggr ) \nonumber \\&= 1 - P\biggl (\frac{a_1\gamma _s{_r}}{\frac{V}{2N_0}+\frac{1}{2}}>\gamma _{th1} \frac{a_2\gamma _s{_r}}{\frac{V}{2N_0}+\frac{1}{2}}>\gamma _{th2} \nonumber \\& \frac{a_3\gamma _s{_r}}{a_1\gamma _s{_r}+\frac{V}{2N_0}+\frac{1}{2}}>\gamma _{th3}\biggr ) \nonumber \\&= 1 - P\biggl ( \gamma _s{_r}> \frac{\gamma _{th1}(V+N_0)}{2a_1} \gamma _s{_r}> \frac{\gamma _{th2}(V+N_0)}{2a_2} \nonumber \\ {}& \gamma _s{_r}> \frac{\gamma _{th3}(V+N_0)}{2(a_3-a_1\gamma _{th3})}\biggr ), \end{aligned}$$
(A.1)

where the variable \(\gamma _s{_r}\) has exponential distribution with parameter \(\lambda _s{_r}^\gamma \). Therefore,

$$\begin{aligned} P_{D1}^{FD}&= 1 - \biggl (e^{-\frac{\gamma _{th1}(V+N_0)}{2a_1\lambda _s{_r}^\gamma }}\times e^{-\frac{\gamma _{th2}(V+N_0)}{2a_2\lambda _s{_r}^\gamma }} \nonumber \\&\times e^{-\frac{\gamma _{th3}(V+N_0)}{2(a_3-a_1\gamma _{th3})\lambda _s{_r}^\gamma }}\biggr ) \nonumber \\&= 1 - e^{-\frac{(V+N_0)}{2\lambda _s{_r}^\gamma }\biggl [\frac{\gamma _{th1}}{a_1},\frac{\gamma _{th2}}{a_2},\frac{\gamma _{th3}}{a_3-a_1\gamma _{th3}}\biggr ]} \nonumber \\&= 1 - e^{-\frac{(V+N_0)}{2\lambda _s{_r}^\gamma }\theta _1}, \end{aligned}$$
(A.2)

where \(\theta _1 = \max (\tau _1,\tau _2,\tau _3)\), \(\tau _1 = \frac{\gamma _{th1}}{a_1}\), \(\tau _2 = \frac{\gamma _{th2}}{a_2} \), and \(\tau _3 = \frac{\gamma _{th3}}{(a_3-a_1\gamma _{th3})}\).

Appendix B: proof of proposition 2

The outage probability of \(D_2\) is written as

$$\begin{aligned} P_{D2}^{FD}&= 1 - P\bigl (r_{1,2}>R_2 r_{2,2}>R_2\bigr ) \nonumber \\&= 1 - P\biggl (\frac{c_2P|h_r{_2}|^2}{N_0}>\gamma _{th2} \frac{a_2P|h_s{_r}|^2}{\frac{V}{2}+\frac{N_0}{2}}>\gamma _{th2}\biggr ) \nonumber \\&= 1 - P\biggl ({c_2\gamma _r{_2}}>\gamma _{th2} \frac{a_2\gamma _s{_r}}{\frac{V}{2N_0}+\frac{1}{2}}>\gamma _{th2}\biggr ) \nonumber \\&= 1 - P\biggl ({\gamma _r{_2}}>\frac{\gamma _{th2}}{c_2}{\gamma _s{_r}}>\frac{\gamma _{th2}(V+N_0)}{2a_2}\biggr ) \nonumber \\&= 1 - e^{-\frac{\gamma _{th2}}{c_2\lambda _r{_2}^\gamma }}\times e^{-\frac{\gamma _{th2}(V+N_0)}{2a_2\lambda _s{_r}^\gamma }} \nonumber \\&= 1 - e^{\gamma _{th2} \biggl [\frac{1}{c_2\lambda _r{_2}^\gamma }+\frac{V+N_0}{2a_2\lambda _s{_r}^\gamma } \biggr ]} \nonumber \\&= 1 - e^{-\gamma _{th2}\theta _2}. \end{aligned}$$
(B.1)

where the variable \(\gamma _r{_2}\) is an exponentially distributed random variable with parameter \(\lambda _r{_2}^\gamma \), and \(\theta _2 = (\phi _1+\phi _2)\), \(\phi _1 = \frac{1}{c_2\lambda _r{_2}^\gamma }\), and \(\phi _2 = \frac{V+N_0}{2a_2\lambda _s{_r}^\gamma }\).

Appendix C: proof of proposition 3

The outage probability of user \(D_3\) for deriving the result of (25) can be written as

$$\begin{aligned} P_{D3}^{FD}&= 1 - P\bigl (r_{1,3}>R_3 r_{3,3}>R_3\bigr ) \nonumber \\&= 1 - P\biggl (\frac{c_3P|h_r{_3}|^2}{c_2P|h_r{_3}|^2+N_0}>\gamma _{th3} \nonumber \\ {}& \frac{a_3P|h_s{_r}|^2}{a_1P|h_s{_r}|^2+\frac{V}{2}+\frac{N_0}{2}}>\gamma _{th3}\biggr ) \nonumber \\&= 1 - P\biggl (\frac{c_3\gamma _r{_3}}{c_2\gamma _r{_3}+1}>\gamma _{th3} \nonumber \\ {}& \frac{a_3\gamma _s{_r}}{a_1\gamma _s{_r}+\frac{V}{2N_0}+\frac{1}{2}}>\gamma _{th3}\biggr ) \nonumber \\&= 1 - P\biggl ({\gamma _r{_3}}>\frac{\gamma _{th3}}{(c_3-c_2\gamma _{th3})} \nonumber \\ {}& {\gamma _s{_r}}>\frac{\gamma _{th3}(V+N_0)}{2(a_3-a_1\gamma _{th3})}\biggr ) \nonumber \\&= 1 - \biggl [e^{-\frac{\gamma _{th3}}{(c_3 - c_2\gamma _{th3})\lambda _r{_3}^\gamma }} \nonumber \\& \times e^{-\frac{\gamma _{th3}(V+N_0)}{2(a_3-a_1\gamma _{th3})\lambda _s{_r}^\gamma }}\biggr ] \nonumber \\&= 1 - e^{-\gamma _{th3}\biggl [\frac{1}{(c_3 - c_2\gamma _{th3})\lambda _r{_3}^\gamma }+\frac{V+N_0}{2(a_3-a_1\gamma _{th3})\lambda _s{_r}^\gamma }\biggr ]} \nonumber \\&= 1 - e^{-\gamma _{th3}\theta _3}. \end{aligned}$$
(C.1)

where the variable \(\gamma _r{_3}\) is an exponentially distributed random variable with parameter \(\lambda _r{_3}^\gamma \), and \(\theta _3 = (\psi _1+\psi _2)\), \(\psi _1 = \frac{1}{(c_3-c_2\gamma _{th3})\lambda _r{_3}^\gamma }\), and \(\psi _2 = \frac{V+N_0}{2(a_3-a_1\gamma _{th3})\lambda _s{_r}^\gamma }\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvi, Q.H. Performance analysis of hybrid half and full duplex user relaying non orthogonal multiple access system with advanced successive interference cancellation. Telecommun Syst 83, 67–77 (2023). https://doi.org/10.1007/s11235-023-01010-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01010-8

Keywords

Navigation