Skip to main content
Log in

A novel BCS code in a downlink LTE system over an LTE-MIMO channel

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In general, a concatenated RS/BCH code consists of an outer RS code and an inner BCH code with separation by an interleaver. We create a novel BCS code using a new methodology by combining an outer BCH code with an inner RS code appended by an interleaver to randomize burst errors and help the RS code in correcting the errors. Generally, BCH codes handle binary data, whereas RS codes handle non-binary data. Hence, RS (7, 1) inner code is proposed to achieve compatibility with BCH (15, 5) outer codes and ultimately create a novel BCS code to handle binary data. The proposed BCS code is compared with familiar concatenated RS/BCH codes and single codes (RS and BCH) for BPSK and QPSK modulation schemes. Results show the downlink LTE system performance using the proposed BCS code is significantly better than the uncoded LTE system and single codes (RS and BCH). Moreover, the proposed BCS code also outperforms familiar concatenated RS/BCH codes for both schemes. In contrast, the system performance is improved further when the number of antennas in the MIMO channel is increased from \(2 \times 2\) to \(4 \times 4\). Therefore, the proposed BCS code can be considered a stronger code with high reliability in wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Elnashar, A., & El-Saidny, M. A. (2013). Looking at LTE in practice: A performance analysis of the LTE system based on field test results. IEEE Vehicular Technology Magazine, 8(3), 81.

    Article  Google Scholar 

  2. Lee, J., Han, J. K., & Zhang, J. (2009). MIMO technologies in 3GPP LTE and LTE-advanced. EURASIP Journal on Wireless Communications and Networking, 2009, 3.

    Google Scholar 

  3. Ghosh, S. (2016). Performance evaluation of different coding and modulation scheme in LTE using different bandwidth and correlation levels. Wireless Personal Communications, 86(2), 563. https://doi.org/10.1007/s11277-015-2945-6.

    Article  Google Scholar 

  4. Pattanayak, P., & Kumar, P. (2019). Combined user and antenna scheduling scheme for MIMO-OFDM networks. Telecommunication Systems, 70(1), 3.

    Article  Google Scholar 

  5. El-Khamy, S., Moussa, K., & El-Sherif, A. (2017). A smart multi-user massive MIMO system for next G Wireless communications using evolutionary optimized antenna selection. Telecommunication Systems, 65(2), 309.

    Article  Google Scholar 

  6. Jamal, S., Abdullah, A., Rahman, T., Abdullah, K., Ramli, H. A. M., & Ismail, A. F. (2014). In 2014 Australasian telecommunication networks and applications conference (ATNAC) (pp. 228–232). IEEE.

  7. 3GPP, 3GPP technical specification group radio access network, TS 36.212 V.8.8.0 (2008)

  8. Studer, C., Benkeser, C., Belfanti, S., & Huang, Q. (2010). Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE Journal of Solid-State Circuits, 46(1), 8.

    Article  Google Scholar 

  9. Li, A., Xiang, L., Chen, T., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2016). VLSI implementation of fully parallel LTE turbo decoders. IEEE Access, 4, 323.

    Article  Google Scholar 

  10. Shrestha, R., & Paily, R. P. (2014). High-throughput turbo decoder with parallel architecture for LTE wireless communication standards. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2699.

    Article  Google Scholar 

  11. Yan, Z., He, G., He, W., Wang, S., & Mao, Z. (2016). High performance parallel turbo decoder with configurable interleaving network for LTE application. Integration, 52, 77.

    Article  Google Scholar 

  12. Sun, Y., & Cavallaro, J. R. (2011). Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integration, 44(4), 305.

    Article  Google Scholar 

  13. Wang, G., Shen, H., Sun, Y., Cavallaro, J. R., Vosoughi, A., & Guo, Y. (2014). Parallel interleaver design for a high throughput HSPA+/LTE multi-standard turbo decoder. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(5), 1376.

    Article  Google Scholar 

  14. Yuan, H., & Kam, P. Y. (2014). Soft-decision-aided channel estimation over the flat-fading channel, and an application to iterative decoding using an example LTE turbo code. IEEE Transactions on Wireless Communications, 13(11), 6027.

    Article  Google Scholar 

  15. Yoo, I., Kim, B., & Park, I. C. (2014). Tail-overlapped SISO decoding for high-throughput LTE-advanced turbo decoders. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2711.

    Article  Google Scholar 

  16. Ardakani, A., & Shabany, M. (2015). A novel area-efficient VLSI architecture for recursion computation in lte turbo decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(6), 568.

    Article  Google Scholar 

  17. Mataveli, L. O., & De Almeida, C. (2015). Complexity reduction of convolutional and turbo decoding based on reliability thresholds. Wireless Personal Communications, 82(3), 1279.

    Article  Google Scholar 

  18. Wang, C., Wang, S., Tian, Y., & Ma, Y. (2013). In 2013 5th IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (pp. 487–491). IEEE.

  19. Li-fu, L., Hai-wen, L., Hong-liang, L., & Yong-jun, G. (2017). In 2017 IEEE 2nd advanced information technology, electronic and automation control conference (IAEAC) (pp. 890–894). IEEE.

  20. Min, Z., Junwei, H., Jie, M., & Qiang, D. (2009). In 2009 International forum on information technology and applications (Vol. 2, pp. 303–306). IEEE.

  21. Zhu, L., Jiang, M., & Wu, C. (2013). In 2013 International conference on wireless communications and signal processing (pp. 1–4). IEEE.

  22. Chatzigeorgiou, I., Demosthenous, A., Rodrigues, M. R., & Wassell, I. J. (2010). Performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems. IET Communications, 4(4), 419.

    Article  Google Scholar 

  23. Bhurtah, I., Catherine, P. C., & Soyjaudah, K. S. (2015). In International conference on computing, communication & automation (pp. 1406–1410). IEEE.

  24. Breddermann, T., & Vary, P. (2014). Rate-compatible insertion convolutional turbo codes: Analysis and application to LTE. IEEE Transactions on Wireless Communications, 13(3), 1356.

    Article  Google Scholar 

  25. Hussain, G. A., & Audah, L. (2018). RS codes for downlink LTE system over LTE-MIMO channel. TELKOMNIKA, 16(6), 281.

    Article  Google Scholar 

  26. Hussain, G. A., & Audah, L. (2018). Downlink LTE system performance improvement by using BCH codes over LTE-MIMO channel. International Journal of Integrated Engineering, 10(4), 95.

    Article  Google Scholar 

  27. Suls, A., Neckebroek, J., Lefevre, Y., Guenach, M., & Moeneclaey, M. (2017). Semi-analytical evaluation of concatenated RS/LDPC coding performance with finite block interleaving. IEEE Communications Letters, 21(6), 1237.

    Article  Google Scholar 

  28. Kasami, T., Takata, T., Yamashita, K., Fujiwara, T., & Lin, S. (1997). On bit-error probability of a concatenated coding scheme. IEEE Transactions on Communications, 45(5), 536.

    Article  Google Scholar 

  29. Hershey, P., Ephremides, A., & Khatri, R. (1987). Performance of RS-BCH concatenated codes and BCH single-stage codes on an interference satellite channel. IEEE Transactions on Communications, 35(5), 550.

    Article  Google Scholar 

  30. Hu, Q., Sun, C., & Zhao, H. A. (2010). In 2010 International conference on communications, circuits and systems (ICCCAS) (pp. 303–307). IEEE.

  31. Yuan, D., Zhang, L., & Gao, C. (1999). In Fifth Asia-Pacific conference on... and fourth optoelectronics and communications conference on communications (Vol. 1, pp. 677–679). IEEE.

  32. Jo, D., Kwon, S., & Shin, D. J. (2018). Blind reconstruction of BCH codes based on consecutive roots of generator polynomials. IEEE Communications Letters, 22(5), 894.

    Article  Google Scholar 

  33. Affeldt, R., Garrigue, J., & Saikawa, T. (2020). A library for formalization of linear error-correcting codes. Journal of Automated Reasoning. https://doi.org/10.1007/s10817-019-09538-8.

  34. Le Gal, B., & Jego, C. (2020). High-throughput FFT-SPA decoder implementation for non-binary LDPC codes on x86 multicore processors. Journal of Signal Processing Systems, 92(1), 37.

    Article  Google Scholar 

  35. Keskin, S., & Kocak, T. (2017). GPU-based gigabit LDPC decoder. IEEE Communications Letters, 21(8), 1703.

    Article  Google Scholar 

  36. Vilela, J. P., Gomes, M., Harrison, W. K., Sarmento, D., & Dias, F. (2015). Interleaved concatenated coding for secrecy in the finite blocklength regime. IEEE Signal Processing Letters, 23(3), 356.

    Article  Google Scholar 

  37. Zhan, M., Pang, Z., Dzung, D., & Xiao, M. (2018). Channel coding for high performance wireless control in critical applications: Survey and analysis. IEEE Access, 6, 29648.

    Article  Google Scholar 

  38. Oh, J., Ha, J., Park, H., & Moon, J. (2015). RS-LDPC concatenated coding for the modern tape storage channel. IEEE Transactions on Communications, 64(1), 59.

    Article  Google Scholar 

  39. Ji, W., Zhang, W., Peng, X., & Liu, Y. (2016). High-efficient Reed–Solomon decoder design using recursive Berlekamp–Massey architecture. IET Communications, 10(4), 381.

    Article  Google Scholar 

  40. Chen, M., Xiao, X., Li, X., Yu, J., Huang, Z. R., Li, F., et al. (2016). Improved BER performance of real-time DDO-OFDM systems using interleaved Reed–Solomon codes. IEEE Photonics Technology Letters, 28(9), 1014.

    Article  Google Scholar 

  41. Van Wonterghem, J., Alloumf, A., Boutros, J. J., & Moeneclaey, M. (2016). In 2016 Symposium on communications and vehicular technologies (SCVT) (pp. 1–6). IEEE.

  42. Alwan, M. H., Singh, M., Mahdi, H. F. (2015). In 2015 IEEE student conference on research and development (SCOReD) (pp. 556–560). IEEE.

  43. Le Floch, B., Alard, M., & Berrou, C. (1995). Coded orthogonal frequency division multiplex [TV broadcasting]. Proceedings of the IEEE, 83(6), 982.

    Article  Google Scholar 

  44. Mahdavifar, H., El-Khamy, M., Lee, J., & Kang, I. (2014). Performance limits and practical decoding of interleaved Reed–Solomon polar concatenated codes. IEEE Transactions on Communications, 62(5), 1406.

    Article  Google Scholar 

  45. Demirkan, I., & Silvus, G. (2015). Multilevel Reed–Solomon codes for PMR channels. IEEE Transactions on Magnetics, 52(2), 1.

    Article  Google Scholar 

  46. Al-Barrak, A., Al-Sherbaz, A., Kanakis, T., & Crockett, R. (2016). In 2016 8th Computer science and electronic engineering (CEEC) (pp. 6–11). IEEE.

  47. Sanghvi, A. S., Mishra, N. B., Waghmode, R., & Talele, K. T. (2011). Performance of Reed-Solomon in AWGN channel. International Journal of Electronics and Communication Engineering, 4(3), 259–266.

    Google Scholar 

  48. Moreira, J. C., & Farrell, P. G. (2006). Essentials of error-control coding. Hoboken: Wiley.

    Book  Google Scholar 

  49. Sklar, B. (2001). Digital communications: Fundamentals and applications (2nd ed.). Upper Saddle River, New Jersey: Perntice Hall.

  50. Han, Y., Harliman, P., Kim, S. W., Kim, J. K., & Kim, C. (2009). A novel architecture for block interleaving algorithm in MB-OFDM using mixed radix system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(6), 1020.

    Article  Google Scholar 

  51. 3GPP, TS 36.101. V.10.3.0 (2011)

Download references

Acknowledgements

The authors would like to thank the Ministry of Education Malaysia under Fundamental Research Grant Scheme (Vot. 1627) and Universiti Tun Hussein Onn Malaysia for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasan Ali Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, G.A., Audah, L. A novel BCS code in a downlink LTE system over an LTE-MIMO channel. Telecommun Syst 74, 467–476 (2020). https://doi.org/10.1007/s11235-020-00670-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00670-0

Keywords

Navigation