Skip to main content

Advertisement

Log in

A tutorial survey on vehicle-to-vehicle communications

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The automotive industry is undergoing major transformation, with the emergence of vehicular networks, intelligent transportation systems, and autonomous cars over the last decade. These technologies are made possible by recent advances of software, hardware, and communication systems, along with the development of various applications and standards. Today, new technologies are incorporated into cars that detect potential road hazards and improve the driving experience. There are three key components being integrated into cars: sensors, information systems, and communication technologies to create connected vehicle networks. Vehicle-to-vehicle (V2V) communication is being used in connected networks to reduce traffic congestion, improve passengers’ safety, and enable the efficient management of vehicles on roads. Here, we present recent research developments and current trends in V2V communications. We discuss architectural issues and wireless technologies that support V2V. We also present recently proposed security solutions for V2V. Finally, we discuss outstanding challenges for enabling the deployment and adoption of V2V technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from [76]

Fig. 6
Fig. 7
Fig. 8

Based on [87]

Fig. 9
Fig. 10

Based on [121, 127]

Fig. 11

Adapted from [127]

Similar content being viewed by others

Abbreviations

3GPP:

Third-Generation Partnership Project

5GAA:

5G Automotive Association

AA:

Authentication Authority

ACC:

Adaptive Cruise Control

BCAM:

Binary hash tree-based Certificate Access Management

BD:

Bidirectional

BDL:

Bidirectional Leader

BSM:

Basic Safety Message

CACC:

Cooperative Adaptive Cruise Control

CAC-CTS:

Cooperative Adaptive Cruise Control using Turn Signal

CAM:

Certificate Access Management

CPPA:

Conditional Privacy-Preserving Authentication

C-V2X:

Cellular Vehicle to Everything

DOT:

Department of Transportation

DSRC:

Dedicated Short Range Communications

D2D:

Device to Device

E2E:

End-to-End

HD:

High Definition

h-PF:

h-Predecessors Following

h-PLF:

h-Predecessor-Leader Following

IEEE:

Institute of Electrical and Electronics Engineers

GPS:

Global Positioning System

IRT:

Inter Reception Time

IT:

Information Technology

LIDAR:

Laser Imaging Detection and Ranging

LK:

Lane Keeping

LLC:

Left Lane Changing

LOS:

Line of Sight

LTE:

Long-Term Evolution

MAC:

Media Access Control

NFV:

Network Functions Virtualization

NHTSA:

U.S. National Highway Traffic Safety Administration

NLOS:

Non Line of Sight

OBU:

On-Board Unit

OECD:

Organization for Economic Cooperation and Development

OEM:

Original Equipment Manufacturer

OFDM:

Orthogonal Frequency Division Multiplexing

PF:

Predecessor Following

PLF:

Predecessor Leader Following

PRR:

Packet Reception Rate

QoS:

Quality of Service

RLC:

Right Lane Changing

RSU:

RoadSide Unit

SCMS:

Security Credential Management System

SMS:

Short Message Service

SDN:

Software Defined Networking

SPL:

Service Provisioning Layer

TPF:

Two-Predecessors Following

TPLF:

Two-Predecessor-Leader Following

V2I:

Vehicle-to-Infrastructure

V2P:

Vehicle-to-Pedestrian

V2V:

Vehicle-to-Vehicle

V2X:

Vehicle-to-Everything

VANET:

Vehicular Ad hoc NETwork

VCC:

Vehicular Cloud Communication

VNL:

Vehicular Network Layer

VFL:

Vehicular Fog Layer

WAVE:

Wireless Access in Vehicular Environments

Wi-Fi:

Wireless Fidelity

WSMP:

WAVE Short Message Protocol

References

  1. Alberio, M., & Parladori, G. (2017). Innovation in automotive: A challenge for 5G and beyond network. In Proceedings of the international conference of electrical and electronic technologies for automotive, Torino, Italy (pp. 1–6). https://doi.org/10.23919/EETA.2017.7993223.

  2. Schaefer, K. E., & Straub, E. R. (2016). Will passengers trust driverless vehicles? Removing the steering wheel and pedals. In Proceedings of the IEEE international multi-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA), San Diego, CA (pp. 159–165). https://doi.org/10.1109/COGSIMA.2016.7497804.

  3. Jones, L. (2017). Driverless when and cars: Where? [Automotive Autonomous Vehicles]. Engineering & Technology,12(2), 36–40. https://doi.org/10.1049/et.2017.0201.

    Article  Google Scholar 

  4. Hussain, R., & Zeadally, S. (2019). Autonomous cars: Research results, issues and future challenges. IEEE Communications Surveys and Tutorials,21(2), 1275–1313. https://doi.org/10.1109/COMST.2018.2869360.

    Article  Google Scholar 

  5. Volvo. (2018). Volvo city safety technology guide. Retrieved August 28, 2019, from https://www.volvocarscincinnatieast.com/volvo-city-safety-technology-guide.htm.

  6. Volvo. (2017). Volvo cars new xc60 SUV will automatically steer you out of trouble. Retrieved June 1, 2019, from https://www.media.volvocars.com/global/en-gb/media/pressreleases/204531/volvo-cars-new-xc60-suv-will-automatically-steer-you-out-of-trouble.

  7. Keysight Technologies. (2018). How 5G will influence autonomous driving systems, white paper. Retrieved August 30, 2019, from http://literature.cdn.keysight.com/litweb/pdf/5992-2998EN.pdf.

  8. Muller, M. (2009). WLAN 802.11p measurements for vehicle to vehicle (V2V) DSRC. Application Note Rohde & Schwarz,1, 1–25.

    Google Scholar 

  9. Vinel, A., Lyamin, N., & Isachenkov, P. (2018). Modeling of V2V communications for C-ITS safety applications: A CPS perspective. IEEE Communications Letters,22(8), 1600–1603. https://doi.org/10.1109/LCOMM.2018.2835484.

    Article  Google Scholar 

  10. Huang, C. M., Chiang, M. S., Su, W. L., & Dao, D. T. (2018). SDN-based V2V offloading for cellular network using the LifeTime-based network state routing (LT-NSR). In Proceedings of the international conference on information networking (ICOIN), Chiang Mai, Thailand (pp. 274–279). https://doi.org/10.1109/ICOIN.2018.8343124.

  11. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the united states. Proceedings of the IEEE,99(7), 1162–1182. https://doi.org/10.1109/JPROC.2011.2132790.

    Article  Google Scholar 

  12. Wang, S., Wang, T., & Wang, S. (2017). Effective gateway association schemes for performance improvement of V2I communications in heterogeneous vehicular networks. In Proceedings of the IEEE/CIC international conference on communications in China (ICCC), Qingdao (pp. 1–4). https://doi.org/10.1109/ICCChina.2017.8330373.

  13. Kimura, T., Saito H., & Honda, H. (2017). Optimal transmission range for V2I communications on congested highways. In Proceedings of the 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Montreal, QC, Canada (pp. 1–7). https://doi.org/10.1109/pimrc.2017.8292217.

  14. Bauk, S., Calvo J. A. L., Mathar R., & Schmeink, A. (2017) V2P/I communication for increasing occupational safety at a seaport. In Proceedings of the 2017 international symposium ELMAR, Zadar, Croatia (pp. 79–82). https://doi.org/10.23919/ELMAR.2017.8124439.

  15. Ito, H., Murase, T., & Sasajima, K. (2016). Congestion control and energy savings for V2P communication crash warnings with proximity relying. In Proceedings of the 2016 international conference on connected vehicles and expo (ICCVE), Seattle, WA, USA (pp. 43–48). https://doi.org/10.1109/ICCVE.2016.8.

  16. Merdrignac, P., Shagdar, O., & Nashashibi, F. (2017). Fusion of perception and V2P communication systems for the safety of vulnerable road users. IEEE Transactions on Intelligent Transportation Systems,18(7), 1740–1751. https://doi.org/10.1109/TITS.2016.2627014.

    Article  Google Scholar 

  17. Varga, N., Bokor, L., Takács, A., Kovács, J., & Virág, L. (2017). An architecture proposal for V2X communication-centric traffic light controller systems. In Proceedings of the 2017 15th international conference on ITS telecommunications (ITST), Warsaw, Poland (pp. 1–7). https://doi.org/10.1109/ITST.2017.7972217.

  18. Kabashkin, I. (2017). Reliable V2X communications for safety-critical intelligent transport systems. In Proceedings of the 2017 advances in wireless and optical communications (RTUWO), Riga, Latvia (pp. 251–255). https://doi.org/10.1109/RTUWO.2017.8228543.

  19. Jung, H.-G., Lim, K.-T., Shin, D.-K., Yoon, S.-H., Jin, S.-K., Jang S.-H., et al. (2018). Reliability verification procedure of secured V2X communication for autonomous cooperation driving. In Proceedings of the 2018 international conference on information and communication technology convergence (ICTC), Jeju, Korea (pp. 1356–1360). https://doi.org/10.1109/ICTC.2018.8539617.

  20. Chesterton. (2018). How many cars are there in the world? Retrieved August 28, 2019, from https://www.carsguide.com.au/car-advice/how-many-cars-are-there-in-the-world-70629.

  21. TechnoBleak. (2019). Vehicle-To-vehicle (V2V) communication market 2018-2026—Technology, type and application analysis. Coherent market insights. Retrieved August 29, 2019, from https://technobleak.com/vehicle-to-vehicle-v2v-communication-market-2018-2026-technology-type-and-application-analysis-by-coherent-market-insights/.

  22. Raza, S., Neuhaus, E., Günes, M., & Guericke, O. (2018). Time-critical data delivery for emergency applications in vehicle-to-vehicle communication. International Journal on Advances in Networks and Services,11(3), 71–80.

    Google Scholar 

  23. Ahmad, S. A., Hajisami, A., Krishnan, H., Ahmed-Zaid, F., & Moradi-Pari, E. (2017). V2V system congestion control validation and performance. IEEE Transactions on Vehicular Technology,68(3), 2102–2110. https://doi.org/10.1109/TVT.2019.2893042.

    Article  Google Scholar 

  24. Yasser, A., Zorkany, M., & Abdel Kader, N. (2017). VANET routing protocol for V2V implementation: A suitable solution for developing countries. Cogent Engineering,4(1), 1362802.

    Article  Google Scholar 

  25. Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—Performance evaluation. Transportation Research Part C: Emerging Technologies,68, 168–184. https://doi.org/10.1016/j.trc.2016.03.008.

    Article  Google Scholar 

  26. Abbas, T., Sjöberg, K., Karedal, J., & Tufvesson, F. (2015). A measurement-based shadow fading model for vehicle-to-vehicle network simulations. International Journal of Antennas and Propagation. https://doi.org/10.1155/2015/190607.

    Article  Google Scholar 

  27. Eshteiwi, K., Kaddoum, G., Fredj, K. B., Soujeri, E., & Gagnon, F. (2019). Performance analysis of full-duplex vehicle relay-based selection in dense multi-lane highways. IEEE Access,7, 61581–61595. https://doi.org/10.1109/ACCESS.2019.2903453.

    Article  Google Scholar 

  28. Lim, K., & Tuladhar, K. M. (2019). LIDAR: Lidar information based dynamic V2V authentication for roadside infrastructure-less vehicular networks. In Proceedings of the 2019 16th IEEE annual consumer communications & networking conference (CCNC), Las Vegas, NV, USA (pp. 1–6). https://doi.org/10.1109/CCNC.2019.8651684.

  29. Guo, D., Fang, Y., & Wu, Y. (2018). An improved channel estimation method for V2V OFDM communication system. In Proceedings of the 2018 14th IEEE international conference on signal processing (ICSP), Beijing, China (pp. 733–736). https://doi.org/10.1109/ICSP.2018.8652392.

  30. Papadopoulos, L. (2018). Volvo cars and volvo trucks now communicate to improve safety. Interesting engineering. Retrieved August 29, 2019, from https://interestingengineering.com/volvo-cars-and-volvo-trucks-now-communicate-to-improve-safety.

  31. OECD. (2019). Road accidents (indicator). https://doi.org/10.1787/2fe1b899. Retrieved August 30, 2019, from https://data.oecd.org/transport/road-accidents.htm.

  32. Reuters Plus. (2018). Vehicle to vehicle (V2V) communication market 2018: Global industry analysis and opportunity assessment, forecast to 2023. Retrieved August 30, 2019, from https://www.reuters.com/brandfeatures/venture-capital/article?id=55797.

  33. Vibin, V., Sivraj, P., & Vanitha, V. (2018). Implementation of in-vehicle and V2V communication with basic safety message format. In Proceedings of the 2018 international conference on inventive research in computing applications (ICIRCA), Coimbatore, India (pp. 637–642). https://doi.org/10.1109/ICIRCA.2018.8597311.

  34. Wei, S., Zou, Y., Zhang, X., Zhang, T., & Li, X. (2019). An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Transactions on Vehicular Technology,68(2), 1116–1127. https://doi.org/10.1109/TVT.2018.2890418.

    Article  Google Scholar 

  35. Ko, W., & Chang, D. E. (2018). Cooperative adaptive cruise control using turn signal for smooth and safe cut-in. In Proceedings of the 2018 18th international conference on control, automation and systems (ICCAS), Daegwallyeong, South Korea (pp. 807–812).

  36. Knowles Flanagan, S., He, J., & Peng, X. (2018). Improving emergency collision avoidance with vehicle to vehicle communications. In Proceedings of the 2018 IEEE 20th international conference on high performance computing and communications; IEEE 16th international conference on smart city; IEEE 4th international conference on data science and systems (HPCC/SmartCity/DSS), Exeter, United Kingdom (pp. 1322–1329). https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00220.

  37. Sakr, A. H., Bansal, G., Vladimerou, V., & Johnson, M. (2018). Lane change detection using V2V safety messages. In Proceedings of the 2018 21st international conference on intelligent transportation systems (ITSC), Maui, Hawaii, United States of America (pp. 3967–3973). https://doi.org/10.1109/ITSC.2018.8569690.

  38. Yousef, M., Hosny, A., Gamil, W., Adel, M., Fahmy, H. M., Darweesh, M. S., et al. (2018). Dual-mode forward collision avoidance algorithm based on vehicle-to-vehicle (V2V) communication. In Proceedings of the 2018 IEEE 61st international midwest symposium on circuits and systems (MWSCAS), Windsor, Ontario, Canada (pp. 739–742). https://doi.org/10.1109/MWSCAS.2018.8623896.

  39. Satara, S. (2018). 5 amazing safety features of the volvo S60 that probably make it the safest sedan ever. TopSpeed. Retrieved August 29, 2019, from https://www.topspeed.com/cars/car-news/5-amazing-safety-features-of-the-volvo-s60-that-probably-make-it-the-safest-sedan-ever-ar181588.html.

  40. Volvo. (2019). Vision 2020, Aiming for zero. Retrieved August 29, 2019, from https://group.volvocars.com/company/safety-vision.

  41. Cadillac. (2019). 2019 CTS features. Retrieved August 29, 2019, from https://www.cadillac.com/sedans/cts-sedan/features.

  42. Carwise. (2019). 3 futuristic car safety features that may be here soon. Retrieved August 29, 2019, from https://www.carwise.com/blog/2019/01/15/3-futuristic-car-safety-features-that-may-be-here-soon/.

  43. Hwang, M., Dwijaksara, M. H., Oh, H. S., & Jeon, W. S. (2017). Design and implementation of a lightweight data dissemination protocol for V2V communications. In Proceedings of the 2017 international symposium on wireless communication systems (ISWCS), Bologna, Italy (pp. 101–106). https://doi.org/10.1109/ISWCS.2017.8108091.

  44. Zeadally, S., Hunt, R., Chen, Y.-S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems,50(4), 217–241. https://doi.org/10.1007/s11235-010-9400-5.

    Article  Google Scholar 

  45. Jenefa, J., & Mary Anita, E. A. (2018). Secure vehicular communication using ID based signature scheme. Wireless Personal Communications,98(1), 1383–1411. https://doi.org/10.1007/s11277-017-4923-7.

    Article  Google Scholar 

  46. Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications,7, 7–20. https://doi.org/10.1016/j.vehcom.2017.01.002.

    Article  Google Scholar 

  47. Isaac, J. T., Zeadally, S., & Camara, J. S. (2010). Security attacks and solutions for vehicular ad hoc networks. IET Communications,4(7), 894. https://doi.org/10.1049/iet-com.2009.0191.

    Article  Google Scholar 

  48. Saggi, M. K., & Kaur, R. (2015). Isolation of Sybil attack in VANET using neighboring information. In Proceedings of the 2015 IEEE international advance computing conference (IACC), Banglore, India (pp. 46–51). https://doi.org/10.1109/IADCC.2015.7154666.

  49. Mokhtar, B., & Azab, M. (2015). Survey on security issues in vehicular ad hoc networks. Alexandria Engineering Journal,54(4), 1115–1126. https://doi.org/10.1016/j.aej.2015.07.011.

    Article  Google Scholar 

  50. Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2018). A security solution for V2V communication within VANETs. In Proceedings of the 2018 wireless days (WD), Dubai, United Arab Emirates (pp. 181–183). http://doi.org/10.1109/WD.2018.8361716.

  51. Khodaei, M., & Papadimitratos, P. (2018). Efficient scalable and resilient vehicle-centric certificate revocation list distribution in VANETs. In Proceedings of the 11th ACM conference on security & privacy in wireless and mobile networks (WiSec ‘18) (pp. 172–183). http://doi.org/10.1145/3212480.3212481.

  52. Kumar, V., Petit, J., & Whyte, W. (2017). Binary hash tree-based Certificate Access Management for connected vehicles. In Proceedings of the conference on security and privacy in wireless and mobile networks (WiSec’17), Boston, Massachusetts, United States of America (pp. 145–155). https://doi.org/10.1145/3098243.3098257.

  53. Sehrawat, V. S., Shah, Y., Choyi, V. K., Brusilovsky, A., & Ferdi, S. (2017). Certificate and signature free anonymity for V2V communications. In Proceedings of the 2017 IEEE vehicular networking conference (VNC), Torino, Italy (pp. 139–146). http://doi.org/10.1109/VNC.2017.8275624.

  54. He, D., Zeadally, S., Xu, B., & Huang, X. (2015). An efficient identity-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Transactions on Information Forensics and Security,10(12), 2681–2691. https://doi.org/10.1109/TIFS.2015.2473820.

    Article  Google Scholar 

  55. Zaidi, T., & Syed, F. (2018). An overview: Various attacks in VANET. In Proceedings of the 2018 4th international conference on computing communication and automation (ICCCA), Greater Noida, India (pp. 1–6). http://doi.org/10.1109/ccaa.2018.8777538.

  56. Lastinec, J., & Keszeli, M. (2019). Analysis of realistic attack scenarios in vehicle ad-hoc networks. In Proceedings of the 2019 7th international symposium on digital forensics and security (ISDFS), Barcelos, Portugal (pp. 1–6). http://doi.org/10.1109/ISDFS.2019.8757500.

  57. Lyamin, N., Kleyko, D., Delooz, Q., & Vinel, A. (2019). Real-time jamming DoS detection in safety-critical V2V C-ITS using data mining. IEEE Communications Letters,23(3), 442–445. https://doi.org/10.1109/lcomm.2019.2894767.

    Article  Google Scholar 

  58. Kaur, S., & Kumar, A. (2016). Techniques to isolate Sybil attack in VANET: A review. In Proceedings of the 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT), Chennai, India. http://doi.org/10.1109/iceeot.2016.7754777.

  59. Yu, B., Xu, C.-Z., & Xiao, B. (2013). Detecting sybil attacks in VANETs. Journal of Parallel and Distributed Computing,73(6), 746–756. https://doi.org/10.1016/j.jpdc.2013.02.001.

    Article  Google Scholar 

  60. Singh, P. K., Saikamal Tabjul, G., Imran, M., Nandi, S. K., & Nandi, S. (2018). Impact of security attacks on cooperative driving use case: CACC platooning. In Proceedings of the TENCON 2018-2018 IEEE region 10 conference, Jeju, South Korea, 0138-0143. http://doi.org/10.1109/TENCON.2018.8650174.

  61. Bharat, B., Johnson, A. M., Gisele Izera, M., & Pelin, A. (2016). A systematic approach for attack analysis and mitigation in V2V networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),7(1), 97–117. https://doi.org/10.22667/JOWUA.2016.03.31.079.

    Article  Google Scholar 

  62. Han, M. S., Lee, S. J., & Bae, W. S. (2017). A secure and efficient V2V authentication method in heavy traffic environment. Wireless Personal Communications,93(1), 245–254. https://doi.org/10.1007/s11277-016-3884-6.

    Article  Google Scholar 

  63. Contreras-Castillo, J., Zeadally, S., & Guerrero Ibáñez, J. A. (2017). A seven-layered model architecture for internet of vehicles. Journal of Information and Telecommunication,1(1), 4–22. https://doi.org/10.1080/24751839.2017.1295601.

    Article  Google Scholar 

  64. Pinelis, M. (2013). Automotive sensors and electronics: Trends and developments. Detroit: Automotive Sensors and Electronics Expo.

    Google Scholar 

  65. NHTSA. (2016). FMVSS No. 150 vehicle-to-vehicle communication technology for light vehicles. Office of Regulatory Analysis and Evaluation, National Center for Statistics and Analysis.

  66. Zhao, L., Li, X., Gu, B., Zhou, Z., Mumtaz, S., Frascolla, V., et al. (2018). Vehicular communications: Standardization and open issues. IEEE Communications Standards Magazine,2(4), 74–80. https://doi.org/10.1109/MCOMSTD.2018.1800027.

    Article  Google Scholar 

  67. Ahmed, S., Ariffin, S. H. S., & Fisal, N. (2013). Overview of wireless access in vehicular environment (WAVE) protocols and standards. Indian Journal of Science Technology,6(7), 4994–5001.

    Google Scholar 

  68. Kang, B., JeongKyu, B., Seo, W.-C., EunJu, Y., & Seo, D.-W. (2017). Performance analysis of WAVE communication under high-speed driving. ICT Express,3(4), 171–177. https://doi.org/10.1016/j.icte.2017.11.011.

    Article  Google Scholar 

  69. 3GPP TS 36.843. (2014). Study on LTE device to device proximity services: Radio aspects (Release 12). v12.0.1, March 2014.

  70. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Mikls, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine,50(3), 170–177. https://doi.org/10.1109/MCOM.2012.6163598.

    Article  Google Scholar 

  71. Barker, S. (2018). 5G market strategies consumer & enterprise opportunities & forecasts 2018-2025, Juniper, 2018. Retrieved August 30, 2019, from https://www.juniperresearch.com/researchstore/innovation-disruption/5g-market-strategies/subscription/5g-market-strategies-subscription.

  72. Wright, S. (2019). 5 ways 5G technology will impact our lives. Retrieved August 30, 2019, from https://wrighttechnologies.com/5g-technology/.

  73. 5GAA. V2X: Exploring the technology X-V2X. Retrieved August 30, 2019, from http://5gaa.org/5g-technology/c-v2x/.

  74. Lifewire. (2019). 5G wireless technology. Retrieved August 30, 2019, from https://www.lifewire.com/5g-wireless-4155905.

  75. Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications,24(6), 38–45. https://doi.org/10.1109/mwc.2017.1600408.

    Article  Google Scholar 

  76. ITU News. (2017). Why end-to-end network slicing will be important for 5G. Retrieved August 30, 2019, from https://news.itu.int/why-end-to-end-network-slicing-will-be-important-for-5g/.

  77. Lee, W., Na, T., & Kim, J. (2019). How to create a network slice? A 5G core network perspective. In Proceedings of the 2019 21st international conference on advanced communication technology (ICACT). PyeongChang Kwangwoon_Do, South Korea (pp. 616–619). https://doi.org/10.23919/icact.2019.8701936.

  78. Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN networks: A survey of existing approaches. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/comst.2018.2837161.

    Article  Google Scholar 

  79. Bijwe, S., Machida, F., Ishida, S., & Koizumi, S. (2017). End-to-end reliability assurance of service chain embedding for network function virtualization. In Proceedings of the 2017 IEEE conference on network function virtualization and software defined networks (NFV-SDN). https://doi.org/10.1109/nfv-sdn.2017.8169853.

  80. Chekired, D. A., Togou, M. A., Khoukhi, L., & Ksentini, A. (2019). 5G-slicing-enabled scalable SDN core network: Toward an ultra-low latency of autonomous driving service. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/jsac.2019.2927065.

    Article  Google Scholar 

  81. Haspalamutgıl, K., & Adali E. (2017). Adaptive switching method for adaptive cruise control. In Proceedings of the 2017 21st international conference on system theory, control and computing (ICSTCC), Sinaia (pp. 140–145). https://doi.org/10.1109/ICSTCC.2017.8107024.

  82. Askari A., Farias D. A., Kurzhanskiy A. A., & Varaiya P. (2017). Effect of adaptive and cooperative adaptive cruise control on throughput of signalized arterials. In Proceedings of the 2017 IEEE intelligent vehicles symposium (IV), Los Angeles, CA (pp. 1287–1292). https://arxiv.org/abs/1703.01657.

  83. Naus, G., Vugts, R., Ploeg, J., Molengraft, R., & Steinbuch, M. (2010). String-stable CACC design and experimental validation: A frequency-domain approach. IEEE Transactions on Vehicular Techology,59(9), 4268–4279. https://doi.org/10.1109/TVT.2010.2076320.

    Article  Google Scholar 

  84. Ploeg, J., Scheepers, B. T. M., Nunen, E., Van de Wouw, N., & Nijmeijer, H. (2011). Design and experimental evaluation of cooperative adaptive cruise control. In Proceedings of the IEEE intelligent transportation systems conference, Washington, DC (pp. 260–265). https://doi.org/10.1109/ITSC.2011.6082981.

  85. Pathak, G., Li, H., Math, C. B., & De Groot, S. H. (2016). Modelling of communication reliability for platooning applications for intelligent transport system. In Proceedings of the 2016 IEEE 84th vehicular technology conference (VTC-Fall), Montreal, QC (pp. 1–6). https://doi.org/10.1109/VTCFall.2016.7881092.

  86. Feng, Sh, Zhang, Y., Eben Li, Sh, Cao, Z., Liu, H. X., & Li, L. (2019). String stability for vehicular platoon control: Definitions and analysis methods. Annual Reviews in Control.,47(2019), 81–97. https://doi.org/10.1016/j.arcontrol.2019.03.001.

    Article  Google Scholar 

  87. Hobert, L. H. X. (2012). A study on platoon formations and reliable communication in vehicle platoons. Thesis, University of Twente.

  88. ElBatt, T., Goel, S. K., Holland, G., Krishnan, H., & Parikh, J. (2006). Cooperative collision warning using dedicated short-range wireless communications. In Proceedings of the 3rd international workshop on vehicular ad hoc networks. Los Angeles, CA, USA. https://doi.org/10.1145/1161064.1161066.

  89. Ruan, Y., & Jayaweera, S. (2014). Leader-following consensus in vehicle platoons with an inter-vehicle communication network. In Proceedings of the 8th international conference on telecommunication systems services and applications, Kuta (pp. 1–6). https://doi.org/10.1109/TSSA.2014.7065910.

  90. Yu, X., Liu, L., & Feng, G. (2016). Leader-following consensus of multiple unmanned aerial vehicles with input constraints and local coordinate frames. In Proceedings of the IEEE international conference on advanced intelligent mechatronics (pp. 1061–1066). https://doi.org/10.1109/AIM.2016.7576910.

  91. Chen, Y., Zhang, G., & Ge, Y. (2013). Formation control of vehicles using leader-following consensus. In Proceedings of 16th international IEEE conference on intelligent transportation systems, The Hague (pp. 2071–2075). https://doi.org/10.1109/ITSC.2013.6728534.

  92. Li, Y., & He, C. (2018). Connected autonomous vehicle platoon control considering vehicle dynamic information. In Proceedings of the 37th Chinese control conference (CCC), Wuhan (pp. 7834–7839). https://doi.org/10.23919/ChiCC.2018.8483514.

  93. Ren, W., & Atkins, E. (2010). Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control,17(10–11), 1002–1033. https://doi.org/10.1002/rnc.1147.

    Article  Google Scholar 

  94. Meng, Z., Ren, W., Cao, Y., & You, Z. (2011). Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Transactions on Systems, Man, and Cybernetics, Part B,41(1), 75–88. https://doi.org/10.1109/TSMCB.2010.2045891.

    Article  Google Scholar 

  95. Jayaweera, S., Ruan, Y., & Erwin, R. (2010). Distributed tracking with consensus on noisy time-varying graphs with incomplete data. In Proceedings of the 10th international conference on signal processing (pp. 2584–2587). https://doi.org/10.1186/1687-6180-2011-110.

  96. Russo, G., di Bernardo, M., & Sontag, E. (2013). A contraction approach to the hierarchical analysis and design of networked systems. IEEE Transactions on Automatic Control,58(5), 1328–1331. https://doi.org/10.1109/TAC.2012.2223355.

    Article  Google Scholar 

  97. Elias, C. M., El-Baklish, S. K., El-Ghandoor, N. N., Shehata, O. M., & Morgan E. I. (2018). Practical hybrid graph-based formation control architecture for leader-follower trajectory tracking problem. In Proceedings of the 2018 IEEE international conference on vehicular electronics and safety (ICVES), Madrid (pp. 1–6). https://doi.org/10.1109/ICVES.2018.8519514.

  98. Peng, Z., Yang, S., Wen, G., & Rahmani, A. (2014). Distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partial known dynamics. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/670497.

    Article  Google Scholar 

  99. Peng, Z., Wen, G., Rahmani, A., & Yu, Y. (2015). Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. International Journal of Systems Science,46(8), 1447–1457. https://doi.org/10.1080/00207721.2013.822609.

    Article  Google Scholar 

  100. Khan, M. U., Li, S., Wang, Q., & Shao, Z. (2016). Formation control and tracking for co-operative robots with non-holonomic constraints. Journal of Intelligent and Robotic Systems,82(1), 163. https://doi.org/10.1007/s10846-015-0287-y.

    Article  Google Scholar 

  101. Li, L., & Wenling, H. (2009). Multi-AUV formation coordination fuzzy control strategy. Torpedo Technology,17(1), 10–13.

    Google Scholar 

  102. Sahu, B. K., & Subudhi, B. (2018). Flocking control of multiple AUVs based on fuzzy potential functions. IEEE Transactions on Fuzzy Systems,26(5), 2539–2551. https://doi.org/10.1109/TFUZZ.2017.2786261.

    Article  Google Scholar 

  103. Li, Y., Zhang, L., Peeta, S., & He, X. (2016). A car-following model considering the effect of electronic throttle opening angle under connected environment. Nonlinear Dynamics,85(4), 2115–2125. https://doi.org/10.1007/s11071-016-2817-y.

    Article  Google Scholar 

  104. Zhang, Y., Zhang, H., Sun, W., & Pan, C. (2014). Connectivity analysis for vehicular ad hoc network based on the exponential random geometric graphs. In Proceedings of the IEEE intelligent vehicles symposium, Dearborn, MI (pp. 993–998). https://doi.org/10.1109/IVS.2014.6856464.

  105. Shao, C., Leng, S., Zhang, Y., Vinel, A., & Jonsson, M. (2015). Performance analysis of connectivity probability and connectivity-aware MAC protocol design for platoon-based VANETs. IEEE Transactions on Vehicular Technology,64(12), 5596–5609. https://doi.org/10.1109/TVT.2015.2479942.

    Article  Google Scholar 

  106. Li, C., Zhen, A., Sun, J., Zhang, M., & Hu, X. (2016). Analysis of connectivity probability in VANETs considering minimum safety distance. In Proceedings of the 8th international conference on wireless communications & signal processing (WCSP), Yangzhou, China (pp. 1–5). https://doi.org/10.1109/WCSP.2016.7752513.

  107. Li, C., He, D., Zhen, A., Sun, J., & Hu, X. (2017). Enhancing V2V network connectivity for road safety by platoon based VANETs. In Proceedings of the 2017 IEEE international conference on consumer electronics (ICCE), Las Vegas, NV (pp. 273–274). https://doi.org/10.1109/ICCE.2017.7889315.

  108. 5G-PPP White Paper. (2015). 5G automotive vision. Retrieved August 30, 2019, from https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf.

  109. 5G-PPP White Paper. (2018). A study on 5G V2X deployment. Retrieved August 30, 2019, from https://5g-ppp.eu/wp-content/uploads/2018/02/5G-PPP-Automotive-WG-White-Paper_Feb.2018.pdf.

  110. METIS-II. (2016). Deliverable D1.1 Refined scenarios and requirements, consolidated use cases, and qualitative techno-economic feasibility assessment. Retrieved August 30, 2019, from https://metis-ii.5g-ppp.eu/wp-content/uploads/deliverables/METIS-II_D1.1_v1.0.pdf.

  111. Kavathekar, P., & Chen, Y. (2011). Vehicle platooning: A brief survey and categorization. In Proceedings of the ASME 2011 international design engineering technical conferences and computers and information in engineering conference (pp. 829–845). https://doi.org/10.1115/DETC2011-47861.

  112. Ploeg, J., Serrarens, A., & Heijenk, G. (2011). Connect & drive: Design and evaluation of cooperative adaptive cruise control for congestion reduction. Journal of Modern Transportation,19(3), 207–213. https://doi.org/10.1007/BF03325760.

    Article  Google Scholar 

  113. Zheng, Y., Eben, Li S., Wang, J., Cao, D., & Li, K. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems,17(1), 14–26. https://doi.org/10.1109/TITS.2015.2402153.

    Article  Google Scholar 

  114. Yadlapalli, S. K., Darbha, S., & Rajagopal, K. (2006). Information flow and its relation to the stability of the motion of vehicles in a rigid formation. IEEE Transactions on Automatic Control,51(8), 1315–1319. https://doi.org/10.1109/TAC.2006.878723.

    Article  Google Scholar 

  115. Aslam, A., Almeida, L., & Santos, F. (2018). Impact of platoon size on the performance of TDMA-based MAC protocols. In Proceedings of the IEEE globecom workshops (GC Wkshps), Abu Dhabi, United Arab Emirates (pp. 1–2). https://doi.org/10.1109/GLOCOMW.2018.8644433.

  116. Lei, C., Van Eenennaam, E., Wolterink, W., Karagiannis, G., Heijenk, G., & Ploeg, J. (2011). Impact of packet loss on CACC string stability performance. In Proceedings of the 11th international conference on its telecommunications (ITST 2011), Saint Petersburg, Russia (pp. 381–386). https://doi.org/10.1109/ITST.2011.6060086.

  117. Bergenhem, C., Hedin, E., & Skarin, D. (2012). Vehicle-to-vehicle communication for a platooning system. Procedia - Social and Behavioral Sciences,48, 1222–1233. https://doi.org/10.1016/j.sbspro.2012.06.1098.

    Article  Google Scholar 

  118. Karlsson, K., Bergenhem, C., & Hedin, E. (2012). Field measurements of IEEE 802.11p communication in NLOS environments for a platooning application. In Proceedings of the 76th IEEE vehicular technology conference (VTC2012Fall), Quebec City, Canada (pp. 1–5). https://doi.org/10.1109/VTCFall.2012.6399065.

  119. Rahmani, A., Thanigaivelan, N., Gia, T., Granados, J., Negash, B., Liljeberg, P., et al. (2015). Smart eHealth gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems. In Proceedings of the 12th annual IEEE consumer communications and networking conference (CCNC), Las Vegas, USA (pp. 826–834). https://doi.org/10.1109/CCNC.2015.7158084.

  120. Bonomi, F. (2013). The smart and connected vehicle and the internet of things. Retrieved August 30, 2019, from http://tf.nist.gov/seminars/WSTS/PDFs/1-0_Cisco_FBonomi_ConnectedVehicles.pdf.

  121. Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., & Yang, Q. (2015). A hierarchical distributed fog computing architecture for big data analysis in smart cities. In Proceedings of the ASE bigdata & social informatics 2015, Kaohsiung, Taiwan. https://doi.org/10.1145/2818869.2818898.

  122. Ansari, K. (2018). Cloud computing on cooperative cars (C4S): An architecture to support navigation-as-a-service. In Proceedings of the 2018 IEEE 11th international conference on cloud computing (CLOUD), San Francisco, CA (pp. 794–801). https://doi.org/10.1109/CLOUD.2018.00108.

  123. Joshi, J., Jain, K., Agarwal, Y., Deka, M. J., & Tuteja, P. (2015). VWS: Video surveillance on wheels using cloud in VANETs. In Proceedings of the IEEE 12th Malaysia international conference on communications (MICC), Kuching (pp. 129–134). https://doi.org/10.1109/MICC.2015.7725421.

  124. Bousselham, M., Abdellaoui, A., & Chaoui, H. (2017). Security against malicious node in the vehicular cloud computing using a software-defined networking architecture. In Proceedings of the international conference on soft computing and its engineering applications (icSoftComp), Changa (pp. 1–5). https://doi.org/10.1109/ICSOFTCOMP.2017.8280084.

  125. Whaiduzzaman, M., Sookhak, M., Gani, A., & Rajkumar, B. (2014). A survey on vehicular cloud computing. Journal of Network and Computer Applications,40(1), 325–344. https://doi.org/10.1016/j.jnca.2013.08.004.

    Article  Google Scholar 

  126. Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial internet of things and industry 4.0. IEEE Transactions on Industrial Informatics,4(10), 4674–4682. https://doi.org/10.1109/TII.2018.2855198.

    Article  Google Scholar 

  127. Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward integrating vehicular clouds with IoT for smart city services. IEEE Network. https://doi.org/10.1109/MNET.2019.1800236.

    Article  Google Scholar 

  128. Atlam, H., Walters, R., & Wills, G. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing,2(2), 10. https://doi.org/10.3390/bdcc2020010.

    Article  Google Scholar 

  129. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal. https://doi.org/10.1109/jiot.2016.2584538.

    Article  Google Scholar 

  130. Dastjerdi, A., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. Computer,49(8), 112–116. https://doi.org/10.1109/mc.2016.245.

    Article  Google Scholar 

  131. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of ACM mobile cloud computing (MCC ‘12), New York, NY, USA (pp. 13–16). https://doi.org/10.1145/2342509.2342513.

  132. Kai, K., Cong, C., & Tao, L. (2016). Fog computing for vehicular ad-hoc networks: Paradigms, scenarios, and issues. Journal of China Universities of Posts and Telecommunications,23(2), 56–65. https://doi.org/10.1016/S1005-8885(16)60021-3.

    Article  Google Scholar 

  133. Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G. J., & Zhu, J. (2017). Do we all really know what a fog node is? Current trends towards an open definition. Computer Communications,109, 117–130. https://doi.org/10.1016/j.comcom.2017.05.013.

    Article  Google Scholar 

  134. Yi, S., Li, C., & Li, Q. (2015) A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data. ACM, Hangzhou, China (pp. 37–42). https://doi.org/10.1145/2757384.2757397.

  135. Tordera, E. M., Masip-Bruin, X., Garcia-Alminana, J., Jukan, A., Ren, G., Zhu, J., et al. (2016). What is a fog node? A tutorial on current concepts towards a common definition. Retrieved August 30, 2019, from https://arxiv.org/pdf/1611.09193.pdf.

  136. Guevara, J. C., Bittencourt, L. F., & da Fonseca, N. L. S. (2017). Class of service in fog computing. In Proceedings of the 2017 IEEE 9th Latin-American conference on communications (LATINCOM), Guatemala City, Guatemala (pp. 1–6). https://doi.org/10.1109/LATINCOM.2017.8240187.

  137. Da Silva, R. A. C., & da Fonseca, N. L. S. (2019). On the location of fog nodes in fog-cloud infrastructure. Sensors,19, 2445. https://doi.org/10.3390/s19112445.

    Article  Google Scholar 

  138. Vilalta, R., Lopez, L., Giorgetti, A., Peng, S., Orsini, V., Velasco, L., et al. (2017). TelcoFog: A unified flexible fog and cloud computing architecture for 5G networks. IEEE Communication Magazine,55(8), 36–43. https://doi.org/10.1109/MCOM.2017.1600838.

    Article  Google Scholar 

  139. Kim, W., & Chung, S. (2018). User-participatory fog computing architecture and its management schemes for improving feasibility. IEEE Access,6, 20262–20278. https://doi.org/10.1109/ACCESS.2018.2815629.

    Article  Google Scholar 

  140. Fitchard, K., Rizzato, F., & Fogg, I. (2019). The 5G opportunity: How 5G will solve the congestion problems of today’s 4G networks. OpenSignal. Retrieved February 2019, from https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-02/the_5g_opportunity_report_february_2019.pdf. Accessed August 30, 2019.

  141. Federal Motor Vehicle Safety Standards; V2V Communications. (2017). Federal Register, 82(8), 3854–4019. Retrieved August 30, 2019, from https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications.

  142. Green Car Congress. (2019). 5G mobile network goes live at all BMW brilliance automotive production sites in China. Retrieved August 30, 2019, from https://www.greencarcongress.com/2019/07/20190722-bba.html.

  143. Ericsson. (2019). Ericsson and Telefónica to make 5G car manufacturing a reality for Mercedes-Benz. Retrieved August 30, 2019, from https://www.ericsson.com/en/news/2019/6/mercedes-benz-ericsson-and-telefonica-5g-car-manufacturing.

  144. ZDNet. (2018). 5G for car manufacturing: Audi and Ericsson announce partnership. Retrieved August 30, 2019, from https://www.zdnet.com/article/5g-for-car-manufacturing-audi-and-ericsson-announce-partnership/.

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments which helped us improve the content, quality, and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zeadally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeadally, S., Guerrero, J. & Contreras, J. A tutorial survey on vehicle-to-vehicle communications. Telecommun Syst 73, 469–489 (2020). https://doi.org/10.1007/s11235-019-00639-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00639-8

Keywords

Navigation