Skip to main content
Log in

Short distance data transmission method using inaudible high-frequencies between smart devices

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Because wireless communications with inaudible high-frequency signals are used in limited areas due to their low speed, this paper proposes a data communications method using the on–off keying technique and inaudible high-frequency sound signals for speed improvement. The proposed method can be used to send multiple bits simultaneously by mixing specific frequencies that are mapped to each bit. To identify data-transmission errors due to interference from nearby frequency signals, we used the cyclic redundancy check technique. We built applications, tested performance in terms of data-transmission speed and accuracy, and compared the results with those of the existing system. At the setting that showed the highest data transmission, our system sent 40 bits of data in 92 ms, 30 times faster than the existing system, and detected every error. This method can be applied to various environments by changing variables and can be used to send a large amount of data with high accuracy compared to the existing system. Therefore, wireless communications with inaudible high-frequency signals that are used in only limited areas because of low speed will now be able to be utilized in more diverse areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pekka, P., Chia-Hao, Y., Klaus, D., Cassio, R., Carl, W., Klaus, H., et al. (2009). Device-to-device communication underlaying cellular communications systems. Internaational Journal of Communications, Network and System Sciences, 2(3), 169–178. https://doi.org/10.4236/ijcns.2009.23019.

    Article  Google Scholar 

  2. Bihler, P. P., Imhoff, P., & Cremers, A. B. (2011). SmartGuide—A smartphone museum guide with ultrasound control. Procedia Computer Science, 5, 586–592. https://doi.org/10.1016/j.procs.2011.07.076.

    Article  Google Scholar 

  3. Kim, J. B., Song, J. E., & Lee, M. K. (2012). Authentication of a smart phone user using audio frequency analysis. The Journal of the Korea Institute of Information Security and Cryptology, 22(2), 327–336.

    Article  Google Scholar 

  4. Chung, M. B., & Choo, H. S. (2015). Near wireless-control technology between smart devices using inaudible high-frequencies. Multimedia Tools and Applications, 74(15), 5955–5971. https://doi.org/10.1007/s11042-014-1901-x.

    Article  Google Scholar 

  5. Chung, M. B. (2016). Effective near advertisement transmission method for smart-devices using inaudible high-frequencies. Multimedia Tools and Applications, 75(10), 5871–5886. https://doi.org/10.1007/s11042-015-2553-1.

    Article  Google Scholar 

  6. Park, S. S., Do, Y. S., Park, J. S., Kim, D. S., & Choo, H. S. (2014). Inaudible dual tone data transmission for home appliances. In IEEE fourth international conference on consumer electronicsBerlin (ICCE-Berlin), Berlin, Germany (pp. 131–134). https://doi.org/10.1109/icce-berlin.2014.7034228.

  7. Chung, M. B., & Ko, I. J. (2015). Data-sharing method for multi-smart devices at close range. Mobile Information Systems. https://doi.org/10.1155/2015/931765.

    Google Scholar 

  8. Zhang, L., Tan, S., & Yang, J. (2017). Hearing your voice is not enough: An articulatory gesture based liveness detection for voice authentication. In The 2017 ACM SIGSAC conference on computer and communications security, Dallas, TX, USA (pp. 57–71). https://doi.org/10.1145/3133956.3133962.

  9. Roy, N., Hassanieh, H., & Roy, C. R. (2017). Backdoor: Making microphones hear inaudible sounds. In 15th Annual international conference on mobile systems, applications, and services, Niagara Falls, New York, USA (pp. 2–14). https://doi.org/10.1145/3081333.3081366.

  10. Chung, M. B., & Ko, I. J. (2016). Detection of a robust high-frequency range via noise analysis in a real-world environment. In J. J. Park, Y. Pan, G. Yi, & V. Loia (Eds.), Advances in Computer Science and Ubiquitous Computing (pp. 9–15). Singapore: Springer. https://doi.org/10.1007/978-981-10-3023-9_2.

    Google Scholar 

  11. Stelmachowicz, P. G., Beauchaine, K. A., Kalberer, A., & Jesteadt, W. (1989). Normative thresholds in the 8-to 20-kHz range as a function of age. The Journal of the Acoustical Society of America, 86(4), 1384–1391. https://doi.org/10.1121/1.398698.

    Article  Google Scholar 

  12. Takeda, S., Morioka, I., Miyashita, K., Okumura, A., Yoshida, Y., & Matsumoto, K. (1992). Age variation in the upper limit of hearing. European Journal of Applied Physiology and Occupational Physiology, 65(5), 403–408. https://doi.org/10.1007/BF00243505.

    Article  Google Scholar 

  13. Marks, I. I., & Robert, J. (2012). Introduction to Shannon sampling and interpolation theory. New York: Springer-Verlag.

    Google Scholar 

  14. Rao, K. R., Kim, D. N., & Hwang, J. J. (2011). Fast Fourier transform-algorithms and applications (pp. 1–2). New York: Springer.

    Google Scholar 

  15. National Instruments, FFT Fundamentals (Sound and vibration measurement suite). http://zone.ni.com/reference/en-XX/help/372416A-01/svtconcepts/fft_funda/. Accessed 6 September 2017.

  16. Rao, K. R., Kim, D. N., & Hwang, J. J. (2011). Fast Fourier transform-algorithms and applications (pp. 7–13). New York: Springer.

    Google Scholar 

  17. Dorrer, C., Belabas, N., Likforman, J. P., & Joffre, M. (2000). Spectral resolution and sampling issues in Fourier-transform spectral interferometry. Journal of the Optical Society of America B, 17(10), 1795–1802. https://doi.org/10.1364/JOSAB.17.001795.

    Article  Google Scholar 

  18. Schatzman, J. C. (1996). Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM Journal on Scientific Computing, 17(5), 1150–1166. https://doi.org/10.1137/S1064827593247023.

    Article  Google Scholar 

  19. Chitode, J. S. (Ed.). (2009). Digital amplitude modulation or amplitude shift keying. In Analog and digital communication (pp. 585–662). Pune: Technical Publications.

    Google Scholar 

  20. Kumar, U. K., & Umashankar, B. S. (2007). Improved hamming code for error detection and correction. In IEEE 2nd international symposium on wireless pervasive computing (ISWPC’07), San Juan, Puerto Rico. https://doi.org/10.1109/iswpc.2007.342654.

  21. Moreira, J. C., & Farrell, P. G. (2006). Essentials of error-control coding (pp. 81–96). West Sussex: Wiley.

    Book  Google Scholar 

  22. Baoshe, Z. (2015). Java FFTPack. http://jfftpack.sourceforge.net. Accessed 6 September 2017.

  23. Malandro, M. E. (2010). Fast Fourier transforms for finite inverse semigroups. Journal of Algebra, 324(2), 282–312. https://doi.org/10.1016/j.jalgebra.2009.11.031.

    Article  Google Scholar 

  24. Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301. https://doi.org/10.2307/2003354.

    Article  Google Scholar 

  25. Palshikar, G. (2009). Simple algorithms for peak detection in time-series. In 1st international conference advanced data analysis, business analytics and intelligence (pp. 2–13).

  26. Tinevez, J. Y. (2015). A standard peak detector in time series. https://code.google.com/p/fiji-bi/source/browse/src-plugins/FlowMate_/fiji/plugin/flowmate/analysis/PeakDetector.java?name=flow-mate&r=0ec4620b8e4aaebd183c2b57c89390595f574564. Accessed 6 September 2017.

  27. Yoon, D. G., Shin, S. Y., Park, J. H., Park, H. S., & Kwon, W. H. (2007). Performance analysis of IEEE 802.11 b under multiple IEEE 802.15.4 interferences. In F. Boavida, et al. (Eds.), Wired/wireless internet communications (pp. 213–222). Berlin: Springer. https://doi.org/10.1007/978-3-540-72697-5_18.

    Chapter  Google Scholar 

  28. Baicheva, T., Dodunekov, S., & Kazakov, P. (1998). On the cyclic redundancy-check codes with 8-bit redundancy. Computer Communications, 21(11), 1030–1033. https://doi.org/10.1016/S0140-3664(98)00165-0.

    Article  Google Scholar 

  29. Koopman, P., & Chakravarty, T. (2004). Cyclic redundancy code (CRC) polynomial selection for embedded networks. In IEEE 2004 international conference on dependable systems and networks, Provence, Italy (pp. 145–154). https://doi.org/10.1109/dsn.2004.1311885.

  30. Witzke, K., & Leung, C. (1985). A comparison of some error detecting CRC code standards. IEEE Transactions on Communications, 33(9), 996–998. https://doi.org/10.1109/TCOM.1985.1096411.

    Article  Google Scholar 

  31. Singh, N., & Davar, S. C. (2004). Noise pollution-sources, effects and control. The Journal of Human Ecology, 16(3), 181–187.

    Article  Google Scholar 

  32. Tiso, J. (2011). Designing cisco network service architecture (ARCH) foundation learning guide. Indianapolis: Cisco Press.

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by Ministry of Education, under Basic Science Research Program (NRF-2013R1A1A2061478 and NRF-2016R1C1B2007930), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoungbeom Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, M. Short distance data transmission method using inaudible high-frequencies between smart devices. Telecommun Syst 70, 583–594 (2019). https://doi.org/10.1007/s11235-018-0497-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0497-2

Keywords

Navigation