Skip to main content
Log in

Radio resource management with QoS guarantees for LTE-A systems: a review focused on employing the multi-objective optimization techniques

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The increasing number of subscribers’ demand has led to the evolution of future wireless networks that support multimedia applications and require ensuring the quality of services it provides. As the radio resource is becoming scarce, it is turning out to be a vital issue that how should the demands for higher data rates with limited resources is met for the evolving long term evolution-advanced (LTE-A) systems. Moreover, the efficiency and performance of resource management can be further improved by autonomously assigning and managing resources among various users and applications. We have surveyed various radio resource management (RRM) techniques being used for resource sharing in LTE-A networks that focus on the potential of multi-objective optimization algorithms for achieving desired QoS in LTE-A system. In this paper, we present a comprehensive review of RRM techniques, scheduling, and QoS along with a focus on implementing the multi-objective optimization techniques for efficient resource allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 3GPP Recommendation ITU-R M.1079-2 (1994-2000-2003) Performance and quality of service requirements for mobile telecommunications 2000 (IMT 2000) access networks.

  2. 3GPP Report ITU-R M.2135-1 (2009) Guidelines for evolution of radio interface technologies for IM-Advanced.

  3. 3GPP Technical Report 25.814, version 7.1.0 (2006) Physical layer aspects for evolved UTRA.

  4. 3GPP TR 36.912 (2009-2012) Feasibility study for further advancements for E-UTRA (LTE-Advanced)”, Release 9.

  5. 3GPP TS 36.101 (2011) Evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception”, version 10.4.0.

  6. 3GPP TSG-RAN TS 36.300 (2009) Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRANN)”, version 9.0.0.

  7. Abdullah, M. F. L., & Ghanim, M. F. (2011). An overview of CDMA technologies for mobile communications. Journal of Mobile Communication, 5, 16–24.

    Article  Google Scholar 

  8. Abraham, A., Jain, L. C., & Goldberg, R. (2005). Evolutionary multiobjective optimization: theoretical advances and applications. London: Springer.

    Book  Google Scholar 

  9. Adachi, F. (2002, October). Evolution towards broadband wireless systems. In Proceedings of the international symposium on wireless personal multimedia communications (WPMC), vol. 1. Honolulu, Hawaii.

  10. Alasti, M., Neekzad, B., Hui, J., & Vannithamby, R. (2010). Quality of service in WiMAX and LTE networks. IEEE Topics in Wireless Communications, 48, 104.

  11. Ali, A.H., & Nazir, M. (2016). QoS oriented multi-objective optimizer for radio resource management of LTE-A femtocells. Mobile Information Systems.

  12. Ali, A.H., Nazir, M., Afzaal, A., & Sabah, A. (2015). A traffic scheduler for radio resource management of long term evolution: Advanced (LTE-A). Bahria University Journal of Information and Communication Technologies.

  13. Ali, A.,H., & Nazir, M. (2014). Design considerations for radio resource management of LTE/LTE-A Femtocells. Life Science Journal.

  14. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., & Whiting, P. (2001). Providing quality over a shared wireless link. IEEE Communications Magazine, 39(2), 150.

    Article  Google Scholar 

  15. Assaad, M., Mourad, A. (2008). New frequency-time scheduling algorithms for 3GPP/LTE-like OFDMA air interface in the downlink. In IEEE vehicular technology conference (VTC).

  16. Belton, V., & Stewart, T. J. (2001). Multiple criteria decision analysis (Vol. 1, p. 372). Dordrecht: Kluwer Academic Publishers.

  17. Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1, 366–375.

    Article  Google Scholar 

  18. Brintrup, A. M., Ramsden, J., Takagi, H., & Tiwari, A. (2008). Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algorithms. In IEEE Transactions on Evolutionary Computation, 12, 343–354.

    Article  Google Scholar 

  19. Censor, Y. (1977). Pareto optimality in multiobjective problems. Applied Mathematics and Optimization, 4, 41.

    Article  Google Scholar 

  20. Chandrasekhar, V., & Andrews, J. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communication, 57, 3059.

    Article  Google Scholar 

  21. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. London: Elsevier.

    Google Scholar 

  22. Cohon, J. L. (1978). Multiobjective programming and planning (Vol. 5, p. 333). New York: Academic Press.

  23. Dahlman, E., Parkvall, S., Skold, J., & Beming, P. (2008). 3G evolution: HSPA and LTE mobile broadband. Academic Press.

  24. Edgeworth, F.Y. (1987). Mathematical psychics: An essay on the application of mathematics to the moral sciences, C. Kegan Paul & Co., London 1881, University Microfilms International (Out-of-Print Books on Demand).

  25. Ekstrom, H. (2009). QoS control in the 3GPP evolved packet system. IEEE Communication Magazine, 47, 76.

    Article  Google Scholar 

  26. Erturk, M., Aki, H., Guvenc, I., & Arslan, H. (2010). Fair and qos-oriented spectrum splitting in macrocell-femtocell networks. In 2010 IEEE global telecommunications conference (GLOBECOM 2010) (pp. 1–6).

  27. Flavell, R. B. (1976). A new goal programming formulation. Omega, 4, 731.

    Article  Google Scholar 

  28. Fonseca, C.M., & Fleming, P.J. (1998). Multi-objective optimization and multiple constraint handling with evolutionary algorithms. In IEEE transactions on systems, man, and cybernetics: Part A—Systems and humans.

  29. Gass, S., & Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2, 39.

    Article  Google Scholar 

  30. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press. ISBN 978-0-521-83716-3.

    Book  Google Scholar 

  31. Guillaume, M., Pedersen, K.I., Kovacs, I.Z. & Mogensen, P.E. (2008). QoS oriented time and frequency domain packet schedulers for the UTRAN long term evolution. In Proceedings of the IEEE vehicular technology conference (VTC).

  32. Gutierrez, I., Bader, F., Pijoan, J.L. (2008). Prioritization function for packet scheduling in OFDMA systems. In Proceedings of annual international conference on wireless.

  33. Han, B., Zhao, S., Yang, B., Zhang, H., Chen, P. & Yang, F. (2016). Historical PMI based multi-user scheduling for FDD massive MIMO systems. In Proceedings of the IEEE vehicular technology conference (VTC).

  34. Harri, H., & Toskala, A. (2009). LTE for UMTS OFDMA and SC-FDMA based radio access. London: Wiley. ISBN 978-0-470-99401-6 (H/B).

  35. Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making-methods and applications: A state-of-the-art survey. Berlin: Springer.

    Book  Google Scholar 

  36. Jahn, J. (2004). Vector optimization. Berlin: Springer.

    Book  Google Scholar 

  37. Jamalipour, A., Wada, T., & Yamazato, T. (2005). A tutorial on multiple access technologies for beyond 3G mobile networks. IEEE Communications Magazine.

  38. Jayakumari, J. (2010). MIMO-OFDM for 4G wireless systems. International Journal of Engineering Science and Technology, 2(7), 2886.

    Google Scholar 

  39. Jiang, C., Zhang, H., Ren, Y., & Chen, H.-H. (2014). Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Communications Magazine, 52, 14.

    Article  Google Scholar 

  40. Jing, W., Lu, Z., Zhang, Z., Zhang, H., & Wen, X. (2014). Energy-efficient power allocation with QoS provisioning in OFDMA femtocell networks. In IEEE wireless communications and networking conference (WCNC).

  41. Jing, W., Luy, Z., Zhangyy, H., Zhangy, Z., Zhaoy, J. & Wen, X. (2014). Energy-saving resource allocation scheme with QoS provisioning in OFDMA femtocell networks. In IEEE international conference on communications (ICC).

  42. Kaaranen, H., Ahtiainen, A., Naghian, S., & Neime, V. (Eds.). (2005). UMTS networks, architecture, mobility and services (2nd ed.). London: Wiley. ISBN 978-0-470-01103-4.

  43. Kalyanmoy, D. (2001). Multi-objective optimization with evolutionary algorithms (Vol. 1). London: Wiley. ISBN 0-471-87339-X.

    Google Scholar 

  44. Kamalian, R., Takagi, H., & Agogino, A. (2004). Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In Proceedings of the genetic and evolutionary computing conference (GECCO).

  45. Kian, C.B., Simon, A., & Angela, D. (2008). Joint time-frequency domain proportional fair scheduler with HARQ for 3GPP LTE Systems. IEEE vehicular technology conference.

  46. Korhonen, P., & Wallenius, J. (1996). Behavioural issues in MCDM: Neglected research questions. Journal of Multi-Criteria Decision Analysis.

  47. Korhonen, P. (2005). Interactive methods. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis, state of the art surveys (pp. 641–665). Berlin: Springer.

    Chapter  Google Scholar 

  48. Kuhn, H., & Tucker, A. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the second Berkeley symposium on mathematical statistics and probability. Berkeley: University of California Press.

    Google Scholar 

  49. Larichev, O. (1992). Cognitive validity in design of decision aiding techniques. Journal of Multi-Criteria Decision Analysis, 1, 127.

    Article  Google Scholar 

  50. Lee, S.-B., Pefkianakis, L., Meyerson, A., Xu, S. & Lu, S. (2009). Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink. In IEEE INFOCOM.

  51. Li, W., Zhang, H., Zheng, W., Su, T., & Wen, X. (2012). Energy-efficient power allocation with dual-utility in two-tier OFDMA femtocell networks. In IEEE International workshop on heterogeneous and small cell networks (HetSNets).

  52. Li, W., Zheng, W., Zhang, H., Su, T., & Wen, X. (2012). Energy-efficient resource allocation with interference mitigation for two-tier OFDMA femtocell networks. In IEEE 23rd international symposium on personal, indoor and mobile radio communications-(PIMRC).

  53. Liu, H., Zheng, W., Zhang, H., Zhang, Z. & Wen, X. (2013). An iterative two-step algorithm for energy efficient resource allocation in multi-cell OFDMA networks. In IEEE wireless communications and networking conference (WCNC).

  54. Liu, H., Zheng, W., Zhang, H., Zhang, Z. & Wen, X. (2014). An iterative two-step algorithm for energy efficient resource allocation in multi-cell OFDMA networks. In IEEE wireless communications and networking conference (WCNC).

  55. Liu, H., & Li, G. (2005). OFDM-based broadband wireless networks design and optimizations. London: Willay. ISBN 978-0-471-72346-2.

    Book  Google Scholar 

  56. Lorenz, D. H., & Orda, A. (1998). QoS routing in networks with uncertain parameters: Theory and algorithms. IEEE/ACM Transactions on Networking, 6, 768.

    Article  Google Scholar 

  57. Ma, W., Wen, X., Zheng, W., & Lu, Z. (2011). Utility-based cross-layer multiple traffic scheduling for MU-OFDMA. Advances in Information Sciences and Service Sciences.

  58. Ma, W., Zhang, H., Zheng, W., Lu, Z., & Wen, X. (2012). MOS-driven energy efficient power allocation for wireless video communications. In IEEE broadband wireless access workshop.

  59. Ma, W., Zheng, W., Wen, X., & Lu, Z. (2012). A novel QoS guaranteed cross-layer scheduling scheme for downlink multiuser OFDM systems. In Proceedings of IEEE ICOEIS.

  60. Ma, W., Zheng, W., Wen, X., & Lu, Z. (2012). Utility-based fairness power control scheme in OFDMA femtocell networks. Journal of Electronics and Information Technology, 34, 2287–2292.

    Article  Google Scholar 

  61. Machwe, A., Parmee, I.C., & Miles, J.C. (2006). Multi-objective analysis of a component based representation within an interactive evolutionary design system. In Proceedings of the seventh international conference in adaptive computing and design and manufacturing.

  62. Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26, 369.

    Article  Google Scholar 

  63. Miettinen, K. (1999). Nonlinear multi-objective optimization. Boston: Kluwer.

    Google Scholar 

  64. Miettinen, K. (2006). IND-NIMBUS for demanding interactive multiobjective optimization. In T. Trzaskalik (Ed.), Multiple criteria decision making ’05 (pp. 137–150). Katowice: The Karol Adamiecki University of Economics.

    Google Scholar 

  65. Miettinen, K., & Makela, M. M. (1995). Interactive bundle-based method for non-differentiable multi-objective optimization: NIMBUS. Optimization, 34, 231.

    Article  Google Scholar 

  66. Moety, F., Lahoud, S., Cousin, B. & Khawam, K. (2015). A heuristic algorithm for joint power-delay minimization in Green Wireless Access Networks. In International conference on computing, networking and communications (ICNC), workshop on computing, networking and communications (CNC), Anaheim, USA.

  67. Morecroft, J. D. W., & Sterman, J. D. (1992). Modelling for learning. Amsterdam: North Holland.

    Google Scholar 

  68. Nguyen, T., & Han, Y. (2006). A proportional fairness algorithm with QoS provision in downlink OFDMA systems. IEEE Communication Letters., 10, 760.

    Article  Google Scholar 

  69. Parag, P., Bhashyam, S., & Aravind, R. (2005). A subcarrier allocation algorithm for OFDMA using buffer and channel state information. In IEEE vehicular technology conference, VTC-2005-Fall.

  70. Pareto, V. (1971). Manuale di economia politica. Piccola Biblioteca Scientifica, Milan (1906), Translated into English by Schwier, A.S., “Manual of political economy”.

  71. Pokhariyal, A., Pedersen, K.I., Monghal, G., Kovac, I.Z., Rosa, C., Kolding, T.E. & Mogensen, P.E. (2007). HARQ aware frequency domain packet with different degrees of fairness for UTRAN LTE. In IEEE Vehicular Technology Conference (VTC).

  72. Proakis, J. G. (2001). Digital communications. New York: McGraw-Hill. ISBN 0-07-232111-3.

    Google Scholar 

  73. Puttonen, J., Kolehmainen, N., Henttonen, T., Moisio, M., & Rinne, M. (2008). Mixed traffic packet scheduling in UTRAN long term evaluation downlink. In 19th International symposium on personal, indoor and mobile radio communications (PIMRC). IEEE.

  74. Rappaport, T.S. (2002). Wireless Communications, Principles and Practice, 2nd ed. ISBN 0-13-042232-0.

  75. Recommendation ITU-R M.1822 (2007) Framework for services supported by IMT.

  76. Rejeb, S. B., Nasser, N., & Tabbane, S. (2014). A novel resource allocation scheme for LTE network in the presence of mobility. Journal of Network and Computer Applications, 46, 352.

    Article  Google Scholar 

  77. Roy, B. (1993). Decision science or decision-aid science. European Journal of Operational Research, 66, 184.

    Article  Google Scholar 

  78. Roy, A., & Das, S. K. (2002). Optimizing QoS-based multicast routing in wireless networks: A multi-objective genetic algorithmic approach. Networking. Berlin: Springer.

    Google Scholar 

  79. Sandrasegaran, K., Ramli, H.A.M. & Basukala, R. (2010). Delay-prioritized scheduling (DPS) for real time traffic in 3GPP LTE system. In IEEE WCNC.

  80. Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multi-objective optimization. Cambridge: Academic Press.

    Google Scholar 

  81. Shen, Y., Jiang, C., Queky, T.Q.S., Zhangz, H. & Ren, Y. (2014). Device-to-device cluster assisted downlink video sharing: A base station energy saving approach. In IEEE global signal nd information processing (SIP).

  82. Shen, J., Yi, N., Liu, A. & Xiang, H. (2009). Opportunistic scheduling for heterogeneous services in downlink OFDMA system. In IEEE international conference on communications and mobile computing, computer Society (pp. 260–264).

  83. Soldani, D., Li, M., & Cuny, R. (2006). QoS and QoE management in UMTS cellular networks. London: Willey. ISBN 978-0-470-01639-8.

    Book  Google Scholar 

  84. Stefania, S., Issam, T., & Matthew, B. (2009). The UMTS long term evolution forum theory to practice. London: Willey. ISBN 978-0-470-69716-0.

    Google Scholar 

  85. Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. London: Wiley.

    Google Scholar 

  86. Stocchi, C., Marchetti, N. & Prasad, N.R. (2011). Self-optimized radio resource management techniques for LTE-A local area deployments. In Wireless vitae, IEEE 2nd international conference on computing and processing.

  87. Stolyar, A.L., & Ramanan, K. (2000). Largest weighted delay first scheduling: Large deviations and optimality. The Annals of Applied Probability.

  88. Tan, K.C., Lee, T.H., Khoo, D., & Khor, E.F. (2001). A multi-objective evolutionary algorithm toolbox for computer-aided multi-objective optimization. In IEEE transactions on systems, man and cybernetics-part B: cybernetics.

  89. Tsai, T.U., Chung, Y.L. & Tsai, Z. (2010). Communications and networking. ISBN 978-953-114-5.

  90. Vanderpooten, D., & Vincke, P. (1989). Description and analysis of some representative interactive multicriteria procedures. Mathematical and Computer Modelling, 12, 1221.

    Article  Google Scholar 

  91. Vincke, P. (1992). Multicriteria decision-aid. London: Wiley.

    Google Scholar 

  92. Wang, A., Xio, L., Zhou, S., Xu, X., & Yao, Y. (2003). Dynamic resource management in the fourth generation wireless systems. Proceedings of Communication Technology, ICCT International Conference (Vol. 2, pp. 1095–1098).

  93. Yang, H. (2005). A road to future broadband wireless access: MIMO-OFDM-based air interface. IEEE Communication Magazine, 43(1), 53.

    Article  Google Scholar 

  94. Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8, 59–60.

    Article  Google Scholar 

  95. Zhang, Y.J., & Letaief, K.B. (2004). Adaptive resource allocation and scheduling for multiuser packet-based OFDM networks. InIEEE international conference on communication, networking and broadcasting.

  96. Zhang, Z., Zhang, H., Liu, H., Jing, W., & Wen, X. (2013). Energy-efficient resource optimization in spectrum sharing two-tier femtocell networks. In IEEE international conference on communications (ICC).

  97. Zhang, Z., Zhang, H., Lu, Z., Zhao, Z., & Wen, X. (2013). Energy-efficient resource optimization in OFDMA-based dense femtocell networks. In IEEE ICT.

  98. Zhang, Z., Zhang, H., Zhao, Z., Liu, H., Wen, X., & Jing, W. (2013). Low complexity energy-efficient resource allocation in down-link dense femtocell networks. In IEEE 24th international symposium on personal, indoor and mobile radio communications.

  99. Zhang, H., Chu, X., & Wen, X. (2013). 4G Femtocells: resource allocation and interference management. Berlin: Springer. ISBN 978-1-4614-9080-7.

    Book  Google Scholar 

  100. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62, 2366.

    Article  Google Scholar 

  101. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14, 3481.

    Article  Google Scholar 

  102. Zhang, H., Jiang, C., Mao, X., & Chen, H.-H. (2016). Interference -limit resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65, 1761.

    Article  Google Scholar 

  103. Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2016). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16, 730.

    Article  Google Scholar 

  104. Zheng, Q., Zheng, K., & Leung, V. C. M. (2016). Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning. IEEE Transactions on Vehicular Technology, 65, 7857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Haider Ali.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.H., Nazir, M. Radio resource management with QoS guarantees for LTE-A systems: a review focused on employing the multi-objective optimization techniques. Telecommun Syst 67, 349–365 (2018). https://doi.org/10.1007/s11235-017-0342-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0342-z

Keywords

Navigation