Skip to main content
Log in

Fast blind channel estimation for space–time block coded MIMO–OFDM systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Fast blind subspace channel estimation using circular property of the channel matrix is investigated for space–time block coded (STBC) multiple-input multiple-output orthogonal frequency division multiplexing (MIMO–OFDM) systems in this paper. The noise subspace computed from the correlation matrix of received signals requires a large number of symbols to converge in the subspace channel estimation. Using the circular property of the channel matrix, we propose both the cyclic repetition method (CRM) and the forward–backward method (FBM) to generate N times of equivalent signals for each STBC–OFDM symbol, respectively, where N is the size of FFT operation. With these equivalent symbols, the proposed CRM, FBM and CRM–FBM (CFBM) channel estimations can perform very well within a few OFDM symbols. The CRM, FBM and CFBM schemes are applicable to the CP-OFDM, ZP-OFDM and VC-OFDM systems, respectively. The identifiability of the subspace channel estimation is investigated that the channel matrix is determined up to two ambiguity matrices. Computer simulations demonstrate that the CRM-based, FBM-based and CFBM-based channel estimations have better performances than the conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sibille, A., Oestges, C., & Zanella, A. (2010). MIMO from theory to implementation. New York: Academic Press.

    Google Scholar 

  2. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  3. Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  4. Jiang, M., & Hanzo, L. (2007). Multi-user MIMO–OFDM for next generation wireless systems. Proceedings of the IEEE, 95(7), 1430–1469.

    Article  Google Scholar 

  5. Boccardi, F., Clerckx, B., Ghosh, A., Hardouin, E., Jongren, G., Kusume, K., et al. (2012). Multiple antenna techniques in LTE-advanced. IEEE Communications Magazine, 50(3), 114–121.

    Article  Google Scholar 

  6. Stüber, G. L., Barry, J. R., McLaughlin, S. W., Li, Y., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO–OFDM wireless communications. Proceedings of the IEEE, 92(2), 271–294.

    Article  Google Scholar 

  7. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communications: Performance criterion and code construction. IEEE Transactions on Information Theory, 44, 744–765.

    Article  Google Scholar 

  8. Alamouti, S. M. (1998). A simple transmit diversity techniques for wireless communications. IEEE Journal on Selected Areas in Communications, 16, 1451–1458.

    Article  Google Scholar 

  9. Jafarkhani, H. (2005). Space–time coding: Theory and practice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Tirkkonen, O., & Hottinen, A. (2002). Square-matrix embeddable space–time block codes for complex signal constellations. IEEE Transactions on Information Theory, 48, 384–395.

    Article  Google Scholar 

  11. Luo, L., Zhang, J., & Davis, L. M. (2012). Space–time block code and spatial multiplexing design for quadrature-OFDMA systems. IEEE Transactions on Communications, 60(10), 3133–3142.

    Article  Google Scholar 

  12. Li, H., Ho, C. K., Bergmans, J. W. M., & Willems, F. M. J. (2008). Pilot-aided angle-domain channel estimation techniques for MIMO–OFDM systems. IEEE Transactions on Vehicular Technology, 57(2), 906–920.

    Article  Google Scholar 

  13. Liu, Y., Tan, Z., Hu, H., Cimini, L. J., & Li, G. Y. (2014). Channel estimation for OFDM. IEEE Communications Surveys & Tutorials, 16(4), 1891–1908.

    Article  Google Scholar 

  14. Gao, F., Zeng, Y., Nallanathan, A., & Ng, T. S. (2008). Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis. IEEE Journal on Selected Areas in Communications, 26, 378–388.

    Article  Google Scholar 

  15. Gong, Y., & Letaief, K. B. (2003). Low complexity channel estimation for space–time coded wideband OFDM systems. IEEE Transactions on Wireless Communications, 2, 876–882.

    Article  Google Scholar 

  16. Tu, C.-C., & Champagne, B. (2009). Subspace-based blind channel estimation for MIMO–OFDM systems with reduced time averaging. IEEE Transactions on Vehicular Technology, 59(3), 1539–1544.

    Google Scholar 

  17. Sarmadi, N., Shahbazpanahi, S., & Gershman, A. B. (2009). Blind channel estimation in orthogonally coded MIMO–OFDM systems: A semidefinite relaxation approach. IEEE Transactions on Signal Processing, 57(6), 2354–2364.

    Article  Google Scholar 

  18. Zhang, H., Yuan, D., Chen, H., & Nossek, J. (2009). Effects of channel estimation error on array processing based QO-STBC coded OFDM systems. IEEE Communications Letters, 13(4), 212–214.

    Article  Google Scholar 

  19. Zeng, Y. H., Lam, W. H., & Ng, T. S. (2006). Semi-blind channel estimation and equalization for MIMO space–time coded OFDM. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(2), 463–474.

    Article  Google Scholar 

  20. Yu, J. L., & Lin, Y. C. (2009). Space–time coded MIMO ZP-OFDM systems: Semi-blind channel estimation and equalization. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7), 1360–1372.

    Article  Google Scholar 

  21. Kim, J. G., Oh, J. H., & Lim, J. T. (2012). Subspace-based channel estimation for MIMO–OFDM systems with few received blocks. IEEE Signal Processing Letters, 19(7), 435–438.

    Article  Google Scholar 

  22. Zhang, B., Yu, J. L., & Lai, J. W. (2014). A fast subspace channel estimation for STBC-based MIMO–OFDM systems. In Proceedings of the eleventh international symposium on wireless communication systems (ISWCS), Barcelona, Spain, pp. 26–29.

  23. Vershynin, R. (2012). How close is the sample covariance matrix to the actual covariance matrix? Journal of Theoretical Probability, 25(3), 655–686.

    Article  Google Scholar 

  24. Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Boston: Now Publishers.

    Google Scholar 

  25. Giannakis, G. B., Hua, Y., Stoica, P., & Tong, L. (2001). Signal processing advances in wireless and mobile communications (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan under Grants MOST-104-2221-E-030-004-MY2, the National Natural Science Foundation of China under Grants No. 61501041, the Open Foundation of State Key Laboratory under Grants No. ISN16-08, the Special Foundation for Young Scientists of Quanzhou Normal University of China under Grants No. 201330 and Fujian Province Education Department under Grants JA13267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Lang Yu.

Appendices

Appendix 1: Proof of Lemma 1

We note that \(\mathbf{G}\) and \(\mathbf{H}\) have the same rank for \(\mathbf{P}_{2N,M_\mathrm{r}} \) and \(\mathbf{Q}_{2N,K} \) are orthogonal matrices. Since G is a block circular matrix, it is diagonalizable by DFT/IDFT matrix,

$$\begin{aligned} \mathbf{G}= & {} \mathbf{F}_{N,2M_r }^H diag(\varvec{\Lambda }_G (0),\ldots ,\varvec{\Lambda }_G (N-1))\mathbf{F}_{N,2K} \nonumber \\= & {} \mathbf{F}_{N,2M_r }^H \varvec{\Lambda }_G \mathbf{F}_{N,2K} , \end{aligned}$$
(63)

where \(\mathbf{F}_{N,M} =\mathbf{F}_N \otimes \mathbf{I}_M \) and \(\varvec{\Lambda }_G (k)\) is the kth frequency response of \(\{\mathbf{g}(n)\}\). From (11), \(\varvec{\Lambda }_G (k)\) is obtained as

$$\begin{aligned} \varvec{\Lambda }_G (k)= & {} \left( {{\begin{array}{cc} \varvec{\Lambda }_1 (k)&{} \varvec{\Lambda }_2 (k) \\ \varvec{\Lambda }_2^*(k)W_N^{Lk} &{} -\varvec{\Lambda }_1^*(k)W_N^{Lk} \\ \end{array} }} \right) \nonumber \\= & {} \left( {{\begin{array}{cc} \mathbf{I}&{} 0 \\ 0&{} {W_N^{Lk} \mathbf{I}} \\ \end{array} }} \right) \left( {{\begin{array}{cc} \varvec{\Lambda }_1 (k)&{} \varvec{\Lambda }_2 (k) \\ \varvec{\Lambda }_2^*(k)&{} -\varvec{\Lambda }_1^*(k) \\ \end{array} }} \right) \nonumber \\= & {} \left( {{\begin{array}{cc} \mathbf{I}&{} 0 \\ 0&{} W_N^{Lk} \mathbf{I} \\ \end{array} }} \right) \varvec{\Lambda }(k), \end{aligned}$$
(64)

From (62), G and H are of full column rank if and only if \(\varvec{\Lambda }(k)\) has full column rank for \(k = 0, {\ldots }, N-1\), which proves this lemma.

Appendix 2: Proof of Theorem 2

Since both H and \({\hat{\mathbf{H}}}\) are of full column rank and \(span(\mathbf{H}) = span({\hat{\mathbf{H}}})\), we have \(\mathbf{H} = {\hat{\mathbf{H}}{} \mathbf{A}}\) where A is a \(2KN\times 2KN\) nonsingular matrix. Applying (13) to both H and \({\hat{\mathbf{H}}}, \mathbf{H} = {\hat{\mathbf{H}}{} \mathbf{A}}\) is simplified as \(\mathbf{G} = {\hat{\mathbf{G}}{} \mathbf{B}}\) where \(\mathbf{B}=\mathbf{Q}_{2N,K}^T \mathbf{AQ}_{2N,K} \). Besides, similar to \(\mathbf{G}\) in (63), \({\hat{\mathbf{G}}}\) can be diagonalizable by \({\hat{\mathbf{G}}}=\mathbf{F}_{N,2M_r }^H {\hat{\varvec{\Lambda }}}_G \mathbf{F}_{N,2K} \). Then we have

$$\begin{aligned} \varvec{\Lambda }_G ={\hat{\varvec{\Lambda }}}_G \underbrace{\mathbf{F}_{N,2K} \mathbf{BF}_{N,2K}^H }_{\buildrel \Delta \over = \mathbf{C}}={\hat{\varvec{\Lambda }}}_G \mathbf{C}, \end{aligned}$$
(65)

where C is a \(2NK\times 2NK\) matrix. Since \(\varvec{\Lambda }_G \hbox { and }{\hat{\varvec{\Lambda }}}_G \) are block diagonal matrices, we can find that C is also a block diagonal matrix with \(\mathbf{C}=diag\left( {\mathbf{C}_{0,0} \cdots \mathbf{C}_{N-1,N-1} } \right) \) where \(\mathbf{C}_{n,n} \) is a \(2K\times 2K\) matrix. Therefore, matrix B becomes

$$\begin{aligned} \mathbf{B}=\mathbf{F}_{N,2K}^H diag\left( {\mathbf{C}_{0,0} \cdots \mathbf{C}_{N-1,N-1} } \right) \mathbf{F}_{N,2K} . \end{aligned}$$
(66)

It is known that a circular matrix can be diagonlizable by the DFT/IDFT matrix, and vice versa. Therefore, matrix B is rewritten as a block circular matrix where the first 2K row vectors are composed by \([\mathbf{B}_{0}{} \mathbf{B}_{1} {\ldots }\mathbf{B}_{N-1}]\) and where \(\mathbf{B}_n ,n = 0,\ldots ,N-1\) is a \(2K\times 2K\) matrix. Using \(\mathbf{G}={\hat{\mathbf{G}}{} \mathbf{B}}\) and B is a block circular matrix, the equations for which the entries in \(\mathbf{G}\) are zeros are given by

$$\begin{aligned}&\underbrace{\left[ {{\begin{array}{ccccccc} {{\hat{\mathbf{g}}}(0)} &{} {{\hat{\mathbf{g}}}(1)} &{} \cdots &{} {{\hat{\mathbf{g}}}(L)} &{} &{} &{} \mathbf{0} \\ &{} {{\hat{\mathbf{g}}}(0)} &{} \cdots &{} \cdots &{} {{\hat{\mathbf{g}}}(L)} &{} &{}\\ &{} &{} \ddots &{} \ddots &{} \ddots &{} \ddots &{} \\ \mathbf{0} &{} &{} &{} {{\hat{\mathbf{g}}}(0)} &{} \cdots &{} \cdots &{} {{\hat{\mathbf{g}}}(L)} \\ \end{array} }} \right] }_{\mathbf{T}_{toe} ({\hat{\mathbf{g}}})}\left[ {{\begin{array}{l} {\mathbf{B}_1 } \\ {\mathbf{B}_2 } \\ \vdots \\ {\mathbf{B}_{N-1} } \\ \end{array} }} \right] \nonumber \\&\qquad =\mathbf{T}_{toe} ({\hat{\mathbf{g}}})\left[ {{\begin{array}{l} {\mathbf{B}_1 } \\ {\mathbf{B}_2 } \\ \vdots \\ {\mathbf{B}_{N-1} } \\ \end{array} }} \right] =\mathbf{0}, \end{aligned}$$
(67)

where \(\mathbf{T}_{toe} ({\hat{\mathbf{g}}})\) is a \(2M_r (N-L-1)\times 2(N-1)K\) block Toeplitz matrix constructing by \({\hat{\mathbf{g}}}=\left[ {{\hat{\mathbf{g}}}(0)\cdots {\hat{\mathbf{g}}}(L)} \right] \). With the assumption that \({\hat{\mathbf{G}}}(z)\) is irreducible, the matrix \(\mathbf{T}_{toe} ({\hat{\mathbf{g}}})\) is of full column rank [25] and \(\mathbf{B}_i =\mathbf{0}\) for \(i = 1,2,\ldots ,N-1\). Then the matrix \(\mathbf{B}\) is simplified as \(\mathbf{B} = \mathbf{I}_N \otimes \mathbf{B}_0 \). It turns out that \(\mathbf{G}={\hat{\mathbf{G}}{} \mathbf{B}}\) becomes

$$\begin{aligned} \mathbf{g}(n)={\hat{\mathbf{g}}}(n)\mathbf{B}_0 ,\hbox { }n = 0,\ldots ,L. \end{aligned}$$
(68)

Let \(\mathbf{B}_0 =\left[ {{\begin{array}{ll} {\mathbf{b}_1 }&{} {\mathbf{b}_3 } \\ {\mathbf{b}_2 }&{} {\mathbf{b}_4 } \\ \end{array} }} \right] \) where \(\mathbf{b}_i \in C^{K\times K}\). Considering \(n = k\) and \(n = L-k\) in (68), we obtain

$$\begin{aligned} \left( {{\begin{array}{cc} {{\hat{\mathbf{h}}}_1 (k)}&{} {{\hat{\mathbf{h}}}_2 (k)} \\ {{\hat{\mathbf{h}}}_2^*(k)}&{} {-{\hat{\mathbf{h}}}_1^*(k)} \\ \end{array} }} \right) \left[ {{\begin{array}{l} {\mathbf{b}_1 -\mathbf{b}_4^*} \\ {\mathbf{b}_2 +\mathbf{b}_3^*} \\ \end{array} }} \right] =\mathbf{0}. \end{aligned}$$
(69)

Since we assume \({\hat{\mathbf{h}}}(0)\) is of full column rank, we have \(\mathbf{b}_4 =\mathbf{b}_1^*\) and \(\mathbf{b}_3 =-\mathbf{b}_2^*\). Using these equalities, the proof of Theorem 2 is complete by simplifying (68) into (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yu, JL., Yuan, Y. et al. Fast blind channel estimation for space–time block coded MIMO–OFDM systems. Telecommun Syst 65, 443–457 (2017). https://doi.org/10.1007/s11235-016-0244-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0244-5

Keywords

Navigation