Skip to main content
Log in

Capacity of orthogonal space–time block codes in spatially correlated MIMO Weibull fading channel under various adaptive transmission techniques

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The effect of spatial correlation on channel capacity of orthogonal space–time block codes (OSTBCs) over multiple-input multiple-output Weibull fading under different adaptive transmission scheme is studied. In this paper, we have derive the moment generating function of the OSTBC received signal-to-noise ratio for integer Weibull parameter \(\beta \), considering spatial fading correlation. Utilizing the exact expression of the MGF, the probability density function has been simply achieved, thus enabling the exact evaluation of OSTBC capacity under distinct power and rate allocation schemes. Numerical outcomes illustrate the effect of fading severity \(\left( \beta \right) \) and fading correlation on the channel capacity and outline the performance differences among the distinctive adaptation schemes. It can be observed that OSTBC system with \(opra\) outperform the system with \(tifr\) adaptive scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channel. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  Google Scholar 

  2. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communication. IEEE Journal Selected Areas in Communication, 16(8), 1451–1458.

    Article  Google Scholar 

  3. Tarokh, V. H., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  Google Scholar 

  4. Sandhu, S., & Paulraj, A. (2000). Space time block codes: A capacitive perspective. IEEE Communications Letter, 4(12), 384–386.

    Article  Google Scholar 

  5. Marzetta, T. L., & Hochwald, B. M. (1999). Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45, 139–157.

    Article  Google Scholar 

  6. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.

    Article  Google Scholar 

  7. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communication, 6, 311–355.

    Article  Google Scholar 

  8. Alouini, M. S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity combining technique. IEEE Transaction on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  9. Mallik, R. K., Win, M. Z., Shao, J. W., Alouini, M. S., & Goldsmith, A. J. (2004). Capacity with adaptive transmission with maximum ratio combining in correlated Rayleigh fading. IEEE Transactions on Wireless Communications, 3(4), 1124–1133.

    Article  Google Scholar 

  10. Maaref, A., & Aïssa, S. (2005). Capacity of space time block codes in MIMO Rayleigh fading with adaptive transmission and estimation errors. IEEE Transactions on Wireless Communications, 4(5), 2568–2578.

    Article  Google Scholar 

  11. Pérez, J., Ibanez, J., Vielva, L., & Santamaria, I. (2005). Closed-form approximation for the outage capacity of orthogonal STBC. IEEE Wireless Communications Letters, 9(11), 961–963.

    Article  Google Scholar 

  12. Pérez, J., Ibanez, J., Vielva, L., Perez-Blanco, D. J., & Santamaria, I. (2007). Tight closed-form approximation for the ergodic capacity of orthogonal STBC. IEEE Wireless Communications, 6(2), 452–457.

    Article  Google Scholar 

  13. Palat, R. C., Annamalai, A., & Reed, J. (2008). An efficient method for evaluating information outage probability and ergodic capacity of OSTBC system. IEEE Wireless Communications Letters, 12(3), 191–193.

    Article  Google Scholar 

  14. Xiao, H.-L., Ouyang, S., Nie, Z.-P., & Zhao, F. (2010). Capacity of orthogonalized Weibull MIMO channels under different adaptive transmission techniques. Wireless Personal Communications, 55(4), 539–550.

    Article  Google Scholar 

  15. Bithas, P. S., & Mathiopoulos, P. T. (2009). Capacity of correlated generalized gamma fading with dual-branch selection diversity. IEEE Transactions on Vehicular Technology, 58(9), 5258–5663.

    Article  Google Scholar 

  16. Xue, J., Caijun, Z., & Tharmalingam, R. (2012). Performance analysis of orthogonal STBC in generalized-fading MIMO channels. IEEE Transactions on Vehicular Technology, 61(3), 1473–1479.

    Article  Google Scholar 

  17. Nechiporenko, T., Phan, K. T., Tellambura, C., & Nguyen, H. H. (2009). On the capacity of Rayleigh fading cooperative systems under adaptive transmission. IEEE Transactions on Wireless Communications, 8(4), 1626–1631.

    Article  Google Scholar 

  18. Pan, G., Ekici, E., & Feng, Q. (2012). Capacity analysis of log-normal channels under various adaptive transmission schemes. IEEE Wireless Communications Letters, 16(3), 346–348.

    Article  Google Scholar 

  19. Zhang, Y., & Tepedelenioglu, C. (2012). Asymptotic capacity analysis for adaptive transmission schemes under general fading distributions. IEEE Transactions on Information Theory, 58(2), 897–908.

    Article  Google Scholar 

  20. Gozali, R., & Woerner, B. D. (2002). On the robustness of space–time block codes to spatial correlation. In Proc. IEEE Vehicular Technology Conf. (VTC-S’02), Birminghaml, pp. 832–836.

  21. Femenias, G. (2004). BER performance of linear STBC from orthogonal designs over MIMO correlated Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 53(2), 307–317.

    Article  Google Scholar 

  22. Babich, F., & Lombardi, G. (2000). Statistical analysis and characterization of the indoor propagation channel. IEEE Transactions on Communications, 48(3), 455–464.

    Article  Google Scholar 

  23. Shepherd, N. H. (1977). Radio wave loss deviation and shadow loss at 900 MHz. IEEE Transactions on Vehicular Technology, VT–26, 309–313.

    Article  Google Scholar 

  24. Bithas, P. S., Karagiannidis, G. K., Sagias, N. C., Mathiopoulos, P. T., Kotsopoulos, S. A., & Corazza, G. (2005). Performance analysis of a class of GSC receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 1963–1970.

    Article  Google Scholar 

  25. Karagiannidis, G. K., Zogas, D. A., & Kotsopoulos, S. A. (2003). An efficient approach to multivariate Nakagami-\(m\) distribution using Green’s matrix approximation. IEEE Transactions on Wireless Communications, 2(5), 883–889.

    Article  Google Scholar 

  26. Karagiannidis, G. K., Zogas, D. A., & Kotsopoulos, S. A. (2003). On the multivariate Nakagami-\(m\) distribution with exponential correlation. IEEE Transactions on Communications, 51(8), 1240–1244.

    Article  Google Scholar 

  27. [Online] Available: http://functions.wolfram.com/

  28. Bellman, R. E., & Roth, R. S. (1984). The laplace transform. Singapore: World scientific.

  29. Chauhan, S. S., & Kumar, S. (2014). Capacity analysis of adaptive transmission with space–time block codes in spatially correlated MIMO Nakagami-\(m\) fading channels. Wireless Personal Communications, 79(2), 1211–1222.

    Article  Google Scholar 

  30. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego: Academic.

    Google Scholar 

  31. Lombardo, P., Fedele, G., & Rao, M. M. (1999). MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications, 47(1), 44–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudakar Singh Chauhan.

Appendices

Appendix 1

Substituting (15) into (16), the expression for the capacity \(\langle {C}\rangle _{ora}\) can be written as

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \mathop {\int }\limits _0^\infty {\text {log}}_{2}\left( 1+\gamma _{s} \right) x\frac{\left( {x\gamma }_{s} \right) ^{j-1}}{\varGamma \left( j \right) }\nonumber \\&\times \,\exp \left( -x\gamma _{s} \right) d\gamma _{s} \end{aligned}$$
(35)

where \(x=\frac{\beta Z}{2\overline{\gamma }_{c}\lambda _{m}}\) and \(x\frac{\left( {x\gamma }_{s} \right) ^{j-1}}{\varGamma \left( j \right) }\exp \left( -x\gamma _{s} \right) \) can be determined as

$$\begin{aligned} x\frac{\left( {x\gamma }_{s} \right) ^{j-1}}{\varGamma \left( j \right) }\exp \left( -x\gamma _{s} \right) =\sum \limits _{p=0}^{j-1} \frac{\left( {x\gamma }_{s} \right) ^{p}}{\varGamma \left( p+1 \right) } \exp \left( -x\gamma _{s} \right) \end{aligned}$$
(36)

Thus substituting (36) into (35) and by using integration by parts (35) can be written as

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \sum \limits _{p=0}^{j-1} \frac{1}{\Gamma \left( p+1 \right) } \nonumber \\&\times \mathop {\int }\limits _0^\infty \frac{1}{\left( 1+\gamma _{s} \right) }\left( {x\gamma }_{s} \right) ^{p} \exp \left( -x\gamma _{s} \right) d\gamma _{s} \end{aligned}$$
(37)

Let \(1+\gamma _{s}=y\), then (37) can be rewritten as

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\mathop {\sum }\limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \mathop {\sum }\limits _{p=0}^{j-1} \frac{x^{p}\exp \left( x \right) }{\varGamma \left( p+1 \right) }\nonumber \\&\times \,\mathop {\int }\limits _1^\infty {\frac{1}{y}\left( y-1 \right) ^{p}\exp \left( -xy \right) dy} \end{aligned}$$
(38)

By using binomial expansion [30], (1.111)] \(\left( t+a \right) ^{n}=\sum \nolimits _{k=0}^n \left( {\begin{array}{l} n\\ k\\ \end{array} } \right) t^{k}a^{n-k}\) and [30], (3.381.3)] \(\mathop {\int }\nolimits _n^\infty x^{v-1} \text {exp }(-ax)dx=a^{-v}\varGamma \left( v,an \right) \), we get

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \sum \limits _{p=0}^{j-1} \frac{x^{p}\exp \left( x \right) }{\varGamma \left( p+1 \right) }\nonumber \\&\times \,\sum \limits _{q=0}^p \left( {\begin{array}{l} p\\ q\\ \end{array} } \right) \left( -1 \right) ^{p-q}\frac{\varGamma \left( q,x \right) }{x^{q}} \end{aligned}$$
(39)

in which \(\varGamma \left( .,. \right) \) represent complementary incomplete gamma function and for q positive integer

$$\begin{aligned} \varGamma \left( q,x \right) =\varGamma \left( q \right) P_{q}\left( x \right) , q\ge 2 \end{aligned}$$
(40)

where \(\mathcal {P}_{k}(.)\) is the Poisson sum and defined as [30]

$$\begin{aligned} \mathcal {P}_{k}\left( c \right) =\exp (-c)\sum \limits _{j=0}^{k-1} \frac{c^{j}}{j!} \end{aligned}$$
(41)

For \(q=0, \varGamma \left( 0,c \right) =E_{1}\left( c \right) \), in which \(E_{1}\left( . \right) \) is the first order exponential integral function \(E_{1}\left( c \right) =\mathop {\int }\nolimits _1^{\infty } {\text {exp}(-ct)} / t dt\) [30]. Thus (39) can be written as

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \left[ \sum \limits _{p=0}^{j-1} \frac{\left( -x \right) ^{p}\exp \left( x \right) }{\varGamma \left( p+1 \right) } E_{1}\left( x \right) \right. \nonumber \\&+\sum \limits _{p=1}^{j-1} \frac{\left( -x \right) ^{p}\exp \left( x \right) }{\varGamma \left( p+1 \right) } \nonumber \\&\times \,\left. \sum \limits _{q=1}^p \frac{p!}{q!\left( p-q \right) !} \left( -x \right) ^{-q}\varGamma \left( q \right) P_{q}\left( x \right) \right] \end{aligned}$$
(42)

Thus, in the first term of (42) utilize (41) and in the second term of (42) interchanging the summation, we get

$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \left[ \mathcal {P}_{j}\left( -x \right) E_{1}\left( x \right) \right. \nonumber \\&\left. +\sum \limits _{q=0}^{j-1} \frac{\mathcal {P}_{q}\left( x \right) }{q} \sum \limits _{p=q}^{j-1} \frac{\left( -x \right) ^{p-q}}{\left( p-q \right) !} \text {exp}(x) \right] \end{aligned}$$
(43)
$$\begin{aligned} \langle {C}\rangle _{ora}= & {} R_{c}\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \xi _{mj} \left[ \mathcal {P}_{j}\left( -x \right) E_{1}\left( x \right) \right. \nonumber \\&\left. +\sum \limits _{q=0}^{j-1} \frac{\mathcal {P}_{q}\left( x \right) \mathcal {P}_{j-q}\left( -x \right) }{q} \right] \end{aligned}$$
(44)

Appendix 2

Inserting (15) into (19), we get the equation that the maximal cut off SNR \(\gamma _{0}\) satisfy

$$\begin{aligned}&\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \frac{\xi _{mj}}{{\Gamma }\left( j \right) \left( \frac{2\overline{\gamma }_{c}}{\beta Z}\lambda _{m} \right) ^{j}} \left[ \frac{1}{\gamma _{0}}\mathop {\int }\limits _{\gamma _{0}}^\infty {\gamma _{s}^{j-1}\text {exp}\left( -\frac{\beta Z\gamma _{s}}{2\lambda _{m}\overline{\gamma }_{c}} \right) } d\gamma _{s} \right. \nonumber \\&\quad \left. -\mathop {\int }\limits _{\gamma _{0}}^\infty {\gamma _{s}^{j-2}\mathrm {exp}\left( -\frac{\beta Z\gamma _{s}}{2\lambda _{m}\overline{\gamma }_{c}} \right) } d\gamma _{s} \right] =1 \end{aligned}$$
(45)

Applying the identity \({\Gamma }\left( n,x \right) =\mathop {\int }\nolimits _x^\infty s^{n-1} e^{-s}ds\), (45) can be rewritten as

$$\begin{aligned}&\sum \limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \frac{\xi _{mj}}{\mathrm {\Gamma }\left( j \right) \left( \frac{2\overline{\gamma }_{c}}{\beta Z}\lambda _{m} \right) ^{j}}\nonumber \\&\quad \times \,\left[ \frac{1}{\gamma _{0}}\frac{{\Gamma }\left( j,\frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}}\gamma _{0} \right) }{\left( \frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}} \right) ^{j}}-\frac{{\Gamma }\left( j-1,\frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}}\gamma _{0} \right) }{\left( \frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}} \right) ^{j-1}} \right] =1\nonumber \\ \end{aligned}$$
(46)

Let \(\gamma _{0}=x\) and describing

$$\begin{aligned}&G\left( x \right) =\mathop {\sum }\limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta /2} \frac{\xi _{mj}}{{\Gamma }\left( j \right) \left( \frac{2\overline{\gamma }_{c}}{\beta Z}\lambda _{m} \right) ^{j}} \nonumber \\&\quad \times \left[ \frac{1}{x}\frac{{\Gamma }\left( j,\frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}}x \right) }{\left( \frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}} \right) ^{j}}-\frac{{\Gamma }\left( j-1,\frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}}x \right) }{\left( \frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}} \right) ^{j-1}} \right] -1 \end{aligned}$$
(47)
$$\begin{aligned}&\frac{dG\left( x \right) }{dx}=-\mathop {\sum }\limits _{m=1}^M \sum \limits _{j=1}^{\mu _{m}\beta / 2} \frac{\xi _{mj}}{{\Gamma }\left( j \right) } \left[ \frac{1}{x^{2}}{\Gamma }\left( j,\frac{\beta Z}{2\lambda _{m}\overline{\gamma }_{c}}x \right) \right] \end{aligned}$$
(48)

We have \(\frac{dG\left( x \right) }{dx}<0, \forall x>0\) and from (47), we achieve that \(\lim _{{x\rightarrow 0}^{+}}{G\left( x \right) }=+\infty \) and \(\lim _{{x\rightarrow +{\infty }}}{G\left( x \right) }=-1<0\). The solution of (48) required numerical root finding techniques. \(\varGamma (n,t)\approx \Gamma (n)\) for higher value of \(t\) and inserting it into (46), we get

$$\begin{aligned} \mathop {\sum }\limits _{m=1}^M \mathop {\sum }\limits _{j=1}^{\mu _{m}\beta /2} {\xi _{mj}\left[ \frac{1}{\gamma _{0}}-\frac{1}{\left( j-1 \right) }\left( \frac{\beta Z}{2\overline{\gamma }_{c}\lambda _{m}} \right) \right] } =1 \end{aligned}$$
(49)

Finally, after some manipulation \(\gamma _{0}\) is given in (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S.S., Kumar, S. Capacity of orthogonal space–time block codes in spatially correlated MIMO Weibull fading channel under various adaptive transmission techniques. Telecommun Syst 62, 101–110 (2016). https://doi.org/10.1007/s11235-015-0057-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0057-y

Keywords

Navigation