Skip to main content
Log in

One-dimensional two-component Bose gas and the algebraic Bethe ansatz

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply the nested algebraic Bethe ansatz to a model of a one-dimensional two-component Bose gas with a δ-function repulsive interaction. Using a lattice approximation of the L-operator, we find the Bethe vectors of the model in the continuum limit. We also obtain a series representation for the monodromy matrix of the model in terms of Bose fields. This representation allows studying an asymptotic expansion of the monodromy matrix over the spectral parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Lieb and W. Liniger, Phys. Rev., 130, 1605–1616 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. E. H. Lieb, Phys. Rev., 130, 1616–1624 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. C. N. Yang, Phys. Rev. Lett., 19, 1312–1315 (1967).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. B. Sutherland, Phys. Rev. Lett., 20, 98–100 (1968).

    Article  ADS  Google Scholar 

  5. B. Sutherland, Phys. Rev. B, 12, 3795–3805 (1975).

    Article  ADS  Google Scholar 

  6. M. Gaudin, La fonction d’onde de Bethe, Masson, Paris (1983).

    Google Scholar 

  7. P. P. Kulish, Phys. D, 3, 246–257 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  8. P. P. Kulish and N. Yu. Reshetikhin, J. Soviet Math., 34, 1948–1971 (1989).

    Article  Google Scholar 

  9. N. Kitanine, J. M. Maillet, and V. Terras, Nucl. Phys. B, 554, 647–678 (1999); arXiv:math-ph/9807020v1 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J. M. Maillet and V. Terras, Nucl. Phys. B, 575, 627–644 (2000); arXiv:hep-th/9911030v1 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. B. Pozsgay, W.-V. G. van Oei, and M. Kormos, J. Phys. A: Math. Theor., 45, 465007 (2012); arXiv:1204.4037v2 [cond-mat.stat-mech] (2012).

    Article  ADS  Google Scholar 

  12. S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “GL(3)-based quantum integrable composite models: 2. Form factors of local operators,” arXiv:1502.01966v2 [math-ph] (2015).

    Google Scholar 

  13. S. Pakuliak, E. Ragoucy, and N. A. Slavnov, Nucl. Phys. B, 893, 459–481 (2015); arXiv:1412.6037v3 [math-ph] (2014).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. G. Izergin and V. E. Korepin, Commun. Math. Phys., 94, 67–92 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Theor. Math. Phys., 40, 688–706 (1979).

    Article  MathSciNet  Google Scholar 

  16. L. A. Takhtadzhyan and L. D. Faddeev, Russ. Math. Surveys, 34, No. 5, 11–68 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  17. L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proc. Les Houches Summer School, Session 64, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219.

    Google Scholar 

  18. P. P. Kulish and N. Yu. Reshetikhin, Soviet Phys. JETP, 53, 108–114 (1981).

    Google Scholar 

  19. P. P. Kulish and N.Yu. Reshetikhin, J. Phys. A: Math. Gen., 16, L591–L596 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, J. Stat. Mech., 1304, P04033 (2013); arXiv:1211.3968v2 [math-ph] (2012).

    MathSciNet  Google Scholar 

  21. S. Pakuliak, E. Ragoucy, and N. A. Slavnov, Nucl. Phys. B, 881, 343–368 (2014); arXiv:1312.1488v2 [math-ph] (2013).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. A. N. Varchenko and V. O. Tarasov, St. Petersburg Math. J., 6, 275–313 (1995); arXiv:hep-th/9311040v3 (1993).

    MathSciNet  Google Scholar 

  23. S. Khoroshkin, S. Pakuliak, and V. Tarasov, J. Geom. Phys., 57, 1713–1732 (2007); arXiv:math/0610517v2 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. S. Khoroshkin and S. Pakuliak, J. Math. Kyoto Univ., 48, 277–321 (2008); arXiv:0711.2819v2 [math.QA] (2007).

    MATH  MathSciNet  Google Scholar 

  25. S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, J. Stat. Mech., 1302, P02020 (2013); arXiv:1210.0768v3 [math-ph] (2012).

    MathSciNet  Google Scholar 

  26. V. E. Korepin, Commun. Math. Phys., 86, 391–418 (1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. A. G. Izergin, Sov. Phys. Dokl., 32, 878–879 (1987).

    MATH  ADS  Google Scholar 

  28. B. Enriquez, S. Khoroshkin, and S. Pakuliak, Commun. Math. Phys., 276, 691–725 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “GL(3)-based quantum integrable composite models: 1. Bethe vectors,” arXiv:1501.07566v2 [math-ph] (2015).

    Google Scholar 

  30. A. G. Izergin, V. E. Korepin, and N. Yu. Reshetikhin, Zap. Nauchn. Sem. LOMI, 150, 26–36 (1986).

    Google Scholar 

  31. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  32. A. G. Izergin and V. E. Korepin, Doklady AN SSSR, 259, 76–79 (1981).

    MATH  MathSciNet  Google Scholar 

  33. A. G. Izergin and V. E. Korepin, Nucl. Phys. B, 205, 401–413 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  34. V. O. Tarasov, L. A. Takhtadzhyan, and L. D. Faddeev, Theor. Math. Phys., 57, 1059–1073 (1983).

    Article  MathSciNet  Google Scholar 

  35. N. M. Bogolyubov and V. E. Korepin, Theor. Math. Phys., 66, 300–305 (1986).

    Article  MathSciNet  Google Scholar 

  36. N. G. de Bruijn, Asymptotic Methods in Analysis (Bibliotheca Mathematica, Vol. 4), North-Holland, Amsterdam (1961).

    Google Scholar 

  37. A. Erdélyi, Asymptotic Expansions, Dover, New York (1956).

    MATH  Google Scholar 

  38. E. Mukhin, V. Tarasov, and A. Varchenko, J. Stat. Mech., 0608, P08002 (2006); arXiv:math/0605015v2 (2006).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Slavnov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 183, No. 3, pp. 409–433, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavnov, N.A. One-dimensional two-component Bose gas and the algebraic Bethe ansatz. Theor Math Phys 183, 800–821 (2015). https://doi.org/10.1007/s11232-015-0297-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0297-8

Keywords

Navigation