Skip to main content
Log in

Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

Proper application of the principles of biological nomenclature is fundamental for scientific and technical communication about organisms. As other scientific disciplines, taxonomy inherently is open to change, thus species names cannot be final and immutable. Nevertheless, altering the names of organisms of high economical, medical, or veterinary importance can become a complex challenge between the scientific need to have correct classifications, and the practical ideal of having fixed classifications. Trypanosoma evansi (Steel, 1885), T. brucei Plimmer & Bradford, 1899 and T. equiperdum Doflein, 1901 are important parasites of mammals. According to current knowledge, the three names are synonyms of a single trypanosome species, the valid name of which should be T. evansi by the mandatory application of the Principle of Priority of zoological nomenclature. Subspecies known as T. brucei brucei Plimmer & Bradford, 1899, T. b. gambiense Dutton, 1902 and T. b. rhodesiense Stephens & Fantham, 1910 should be referred to respectively as T. evansi evansi (Steel, 1885), T. e. gambiense and T. e. rhodesiense. The polyphyletic groupings so far known as T. evansi and T. equiperdum should be referred respectively to as surra- and dourine-causing strains of T. e. evansi. Likewise, trypanosomes so far known as T. b. brucei should be referred to as nagana-causing strains of T. e. evansi. Though it modifies the scientific names of flagship human and animal parasites, the amended nomenclature proposed herein should be adopted because it reflects phylogenetic and biological advancements, fixes errors, and is simpler than the existing classificatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amer, S., Ryu, O., Tada, C., Fukuda, Y., Inoue, N., & Nakai, Y. (2011). Molecular identification and phylogenetic analysis of Trypanosoma evansi from dromedary camels (Camelus dromedarius) in Egypt, a pilot study. Acta Tropica, 117, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J. (2008). Clonality: the genetics, ecology, and evolution of sexual abstinence in vertebrate animals. New York, USA: Oxford University Press.

    Book  Google Scholar 

  • Baker, J. R. (1995). The subspecific taxonomy of Trypanosoma brucei. Parasite, 2, 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Carnes, J., Anupama, A., Balmer, O., Jackson, A., Lewis, M., Brown, R., et al. (2015). Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Neglected Tropical Diseases, 9, e3404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Claes, F., Agbo, E. C., Radwanska, M., Te Pas, M. F. W., Baltz, T., De Waal, D. T., et al. (2003). How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by RAPD and multiplex-endonuclease genotyping approach. Parasitology, 126, 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Claes, F., Agbo, E. C., Radwanska, M., Te Pas, M. F. W., & Büscher, P. (2007). Molecular markers for the different (sub)-species of the Trypanozoon subgenus. In: Developing methodologies for the use of polymerase chain reaction in the diagnosis and monitoring of trypanosomosis (pp. 217–233). FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture: Vienna, Austria.

    Google Scholar 

  • Dubois, A. (2010). Zoological nomenclature in the century of extinctions: priority vs. ‘usage’. Organisms Diversity & Evolution, 10, 259–274.

    Article  Google Scholar 

  • Fraga, J., Fernández-Calienes, A., Montalvo, A. M., Maes, I., Deborggraeve, S., Büscher, P., et al. (2016). Phylogenetic analysis of the Trypanosoma genus based on the heat-shock protein 70 gene. Infection Genetics and Evolution, 43, 165–172.

    Article  CAS  Google Scholar 

  • Franco, J. R., Simarro, P. P., Diarra, A., & Jannin, J. G. (2014). Epidemiology of human African trypanosomiasis. Clinical Epidemiology, 6, 257–275.

    PubMed  PubMed Central  Google Scholar 

  • Garnett, S. T., & Christidis, L. (2017). Taxonomy anarchy hampers conservation. Nature, 546, 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, W. (2003). Species concepts for trypanosomes: from morphological to molecular definitions? Kinetoplastid Biology and Disease, 2, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson, W. (2007). Resolution of the species problem in African trypanosomes. International Journal for Parasitology, 37, 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, W. (2015). Liaisons dangereuses: sexual recombination among pathogenic trypanosomes. Research in Microbiology, 166, 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Gingrich, J. B., Roberts, L. W., & Macken, L. M. (1983). Trypanosoma brucei rhodesiense: mechanical transmission by tsetse, Glossina morsitans (Diptera: Glossinidae), in the laboratory. Journal of Medical Entomology, 20, 673–676.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, P. B., Adams, E. R., Malele, I. I., & Gibson, W. C. (2008). A novel, high-throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon. Infection, Genetics and Evolution, 8, 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Hoare, C. A. (1964). Morphological and taxonomic studies on mammalian trypanosomes. X. Revision of the systematics. Journal of Protozoology, 11, 200–207.

    Article  CAS  PubMed  Google Scholar 

  • Hoare, C. A. (1966). The classification of mammalian trypanosomes. In: Henle, W., Kikuth, W., Meyer, K. F., Nauck E. G., & Tomcsik, J. (Eds), Ergebnisse der Mikrobiologie lmmunitätsforschung und Experimentellen Therapie. Berlin, Germany: Springer, pp. 43–57.

    Chapter  Google Scholar 

  • Hoare, C. A. (1967). Evolutionary trends in mammalian trypanosomes. Advances in Parasitology, 5, 47–91.

    Article  Google Scholar 

  • Hoare, C. A. (1970). The mammalian trypanosomes of Africa. In: Mulligan, H. W. & Potts, W. H. (Eds), The African trypanosomiases. London, UK: George Allen and Unwin, pp. 3–23.

    Google Scholar 

  • Hoare, C. A. (1972). The trypanosomes of mammals. Oxford, UK: Blackwell Scientific Publications.

    Google Scholar 

  • Hutchinson, R., & Gibson, W. (2015). Rediscovery of Trypanosoma (Pycnomonas) suis, a tsetse-transmitted trypanosome closely related to T. brucei. Infection, Genetics and Evolution, 36, 381–388.

    Article  CAS  PubMed  Google Scholar 

  • ICZN (1988) International Commission on Zoological Nomenclature. Opinion. (1844). Trypanosoma brucei Plimmer & Bradford, 1899 (Protista, Mastigophora): spelling of specific name confirmed. Bulletin of Zoological Nomenclature, 45, 154.

    Google Scholar 

  • ICZN (1999). International Commission on Zoological Nomenclature. International Code of Zoological Nomenclature (4th ed.). London, UK: International Trust for Zoological Nomenclature.

    Google Scholar 

  • Isaac, N. J. B., Mallet, J., & Mace, G. M. (2004). Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology and Evolution, 19, 464–469.

    Article  PubMed  Google Scholar 

  • Isobe, T., Holmes, E. C., & Rudenko, G. (2003). The transferrin receptor genes of Trypanosoma equiperdum are less diverse in their transferrin binding site than those of the broad-host range Trypanosoma brucei. Journal of Molecular Evolution, 56, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S., Lamas, G., Lughadha, E. N., & Novarino, G. (2004). Stability or stasis in the names of organisms: the evolving codes of nomenclature. Philosophical Transactions of the Royal Society of London B, 359, 611–622.

    Article  Google Scholar 

  • Kumar, R., Jain, S., Kumar, S., Sethi, K., Kumar, S., & Tripathi, B. N. (2017). Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: current and future perspective. Veterinary Parasitology, 10, 1–12.

    CAS  Google Scholar 

  • Lai, D. H., Hashimi, H., Lun, Z. R., Ayala, F. J., & Lukes, J. (2008). Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings of the National Academy of Sciences of the USA, 105, 1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, N. D. (1977). Nomenclature of Sarcocystis in the ox and sheep and of fecal coccidia of the dog and cat. Journal of Parasitology, 63, 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Levine, N. D. (1980). Some corrections of coccidian (Apicomplexa: Protozoa) nomenclature. Journal of Parasitology, 66, 830–834.

    Article  CAS  PubMed  Google Scholar 

  • Levine, N. D. (1984). Nomenclatural corrections and new taxa in the apicomplexan Protozoa. Transactions of the American Microscopical Society, 103, 195–204.

    Article  Google Scholar 

  • Lun, Z. R., Li, A. X., Chen, X. G., Lu, L. X., & Zhu, X. Q. (2004). Molecular profiles of Trypanosoma brucei, T. evansi and T. equiperdum stocks revealed by the random amplified polymorphic DNA method. Parasitology Research, 92, 335–340.

    Article  PubMed  Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge, M. F., Dawah, A. H. & Wilson, M. R. (Eds), Species: the units of biodiversity. London, UK: Chapman & Hall, pp. 381–424.

    Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York, USA: Columbia University Press.

    Google Scholar 

  • Mekata, H., Konnai, S., Witola, W. H., Inoue, N., Onuma, M., & Ohashi, K. (2009). Molecular detection of trypanosomes in cattle in South America and genetic diversity of Trypanosoma evansi based on expression-site-associated gene 6. Infection, Genetics and Evolution, 9, 1301–1305.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, S. A., & Cantos, G. V. (2018). The kinetic properties of hexokinases in African trypanosomes of the subgenus Trypanozoon match the blood glucose levels of mammal hosts. Comparative Biochemistry and Physiology B, 217, 51–59.

    Article  CAS  Google Scholar 

  • Moreno, S. A., Concepción, J. L., Nava, M., & Molinari, J. (2013). Importance of the horse and financial impact of equine trypanosomiasis on cattle raising in Venezuela. Tropical Animal Health and Production, 45, 1669–1676.

    Article  PubMed  Google Scholar 

  • Moreno, S. A., Molinari, J., & Nava, M. (2015). From population ecology to metabolism: growth of Trypanosoma evansi, and implications of glucose depletion, in a live host. Biochemical Systematics and Ecology, 63, 119–125.

  • Moreno, S. A., & Nava, M. (2015). Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes. Memórias do Instituto Oswaldo Cruz, 110, 468–475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray, M., & Gray, A. R. (1984). The current situation on animal trypanosomiasis in Africa. Preventive Veterinary Medicine, 2, 23–30.

    Article  Google Scholar 

  • Nixon, K. C., & Wheeler, Q. D. (1990). An amplification of the phylogenetic species concept. Cladistics, 6, 211–223.

    Article  Google Scholar 

  • Njiru, Z. K., Constantine, C. C., Masiga, D. K., Reid, S. A., Thompson, R. C. A., & Gibson, W. C. (2006). Characterization of Trypanosoma evansi type B. Infection, Genetics and Evolution, 6, 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Peacock, L., Ferris, V., Sharma, R., Sunter, J., Bailey, M., Carrington, M., et al. (2011). Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proceedings of the National Academy of Sciences of the USA, 108, 3671–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourjafar, M., Badiei, K., Sharifiyazdi, H., Chalmeh, A., Naghib, M., Babazadeh, M., et al. (2013). Genetic characterization and phylogenetic analysis of Trypanosoma evansi in Iranian dromedary camels. Parasitology Research, 112, 899–903.

    Article  PubMed  Google Scholar 

  • Ryley, J. F. (1956). Studies on the metabolism of the protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. Biochemical Journal, 62, 215–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez, E., Perrone, T., Recchimuzzi, G., Cardozo, I., Biteau, N., Aso, P. M., et al. (2015). Molecular characterization and classification of Trypanosoma spp. Venezuelan isolates based on microsatellite markers and kinetoplast maxicircle genes. Parasites & Vectors, 8, 536.

  • Schnaufer, A., Domingo, G. J., & Stuart, K. (2002). Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. International Journal for Parasitology, 32, 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  • Seidl, A. F., Moraes, A. S., Aguilar, R., & Silva, M. S. (1998). A financial analysis of treatment strategies for Trypanosoma evansi in the Brazilian Pantanal. Preventive Veterinary Medicine, 33, 219–234.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Iturriza, A., Nassar, J. M., García-Rawlins, A. M., Rosales, R., & Mijares, A. (2013). Trypanosoma evansi kDNA minicircle found in the Venezuelan nectar-feeding bat Leptonycteris curasoae (Glossophaginae), supports the hypothesis of multiple origins of that parasite in South America. Parasitology International, 62, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Simarro, P. P., Cecchi, G., Paone, M., Franco, J. R., Diarra, A., Ruiz, J. A., et al. (2010). The atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. International Journal of Health Geographics, 9, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, G. R., & Stearley, R. F. (1989). The classification and scientific names of rainbow and cutthroat trouts. Fisheries, 14, 4–10.

    Article  Google Scholar 

  • Stevens, J. R., & Brisse, S. (2004). Systematics of trypanosomes of medical and veterinary importance. In: Maudlin, I., Holmes, P. H. & Miles, M. A. (Eds), The trypanosomiases. Cambridge, MA, USA: CABI Publishing, pp. 1–23.

    Google Scholar 

  • Sutherland, C. S., Yukich, J., Goeree, R., & Tediosi, F. (2015). A literature review of economic evaluations for a neglected tropical disease: human African trypanosomiasis (“sleeping sickness”). PLoS Neglected Tropical Diseases, 9(2), e0003397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, Z., Liu, G., Xie, J., Shen, H., Zhang, L., Zhang, P., et al. (2011). The internal transcribed spacer 1 (ITS-1), a controversial marker for the genetic diversity of Trypanosoma evansi. Experimental Parasitology, 129, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Votýpka, J., Rádrová, J., Skalický, T., Jirků, M., Jirsová, D., Mihalca, A. D., et al. (2015). A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. International Journal for Parasitology, 45, 741–748.

    Article  PubMed  Google Scholar 

  • Wells, E. A. (1972). The importance of mechanical transmission in the epidemiology of nagana: a review. Tropical Animal Health and Production, 4, 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Y. Z., Lun, Z. R., Zhu, X. Q., Hide, G., & Lai, D. H. (2016). Further evidence from SSCP and ITS DNA sequencing support Trypanosoma evansi and Trypanosoma equiperdum as subspecies or even strains of Trypanosoma brucei. Infection Genetics and Evolution, 41, 56–62.

    Article  CAS  Google Scholar 

  • Witola, W. H., Sarataphan, N., Inoue, N., Ohashia, K., & Onuma, M. (2005). Genetic variability in ESAG6 genes among Trypanosoma evansi isolates and in comparison to other Trypanozoon members. Acta Tropica, 93, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. Q., & Baltz, T. (1994). Identification of Trypanosoma evansi, Trypanosoma equiperdum and Trypanosoma brucei brucei using repetitive DNA probes. Veterinary Parasitology, 53, 197–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to an anonymous reviewer for thorough comments that helped to substantially improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Molinari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as 83E3F3C8-F6AC-4B94-B1ED-2C5F5174B318. This article was published as an Online First article on the online publication date shown on this page. The article should be cited by using the doi number. This is the Version of Record.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinari, J., Moreno, S.A. Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules. Syst Parasitol 95, 249–256 (2018). https://doi.org/10.1007/s11230-018-9779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-018-9779-z

Navigation