Skip to main content
Log in

A Strong Law of Large Numbers for Random Monotone Operators

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Random monotone operators are stochastic versions of maximal monotone operators which play an important role in stochastic nonsmooth optimization. Several stochastic nonsmooth optimization algorithms have been shown to converge to a zero of a mean operator defined as the expectation, in the sense of the Aumann integral, of a random monotone operator.

In this note, we prove a strong law of large numbers for random monotone operators where the limit is the mean operator. We apply this result to the empirical risk minimization problem appearing in machine learning. We show that if the empirical risk minimizers converge as the number of data points goes to infinity, then they converge to an expected risk minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Atchade, Y.F., Fort, G., Moulines, E.: On stochastic proximal gradient algorithms. arXiv e-prints (2014). arXiv:1402.2365

  2. Attouch, H.: Familles d’opérateurs maximaux monotones et mesurabilité. Ann. Mat. Pura Appl. 120(1), 35–111 (1979)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H.: Variational Convergence for Functions and Operators, vol. 1. Pitman Advanced Publishing Program (1984)

    Google Scholar 

  4. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MathSciNet  Google Scholar 

  5. Azé, D., Attouch, H., Wets, R.J-B.: Convergence of convex-concave saddle functions: applications to convex programming and mechanics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5, 537–572 (1988)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, Berlin (2011)

    Book  Google Scholar 

  7. Bianchi, P.: Ergodic convergence of a stochastic proximal point algorithm. SIAM J. Optim. 26(4), 2235–2260 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bianchi, P., Hachem, W.: Dynamical behavior of a stochastic forward-backward algorithm using random monotone operators. J. Optim. Theory Appl. 171(1), 90–120 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bianchi, P., Hachem, W., Salim, A.: A constant step forward-backward algorithm involving random maximal monotone operators. J. Convex Anal. 26(2), 397–436 (2019)

    MathSciNet  Google Scholar 

  10. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: NIPS, pp. 161–168 (2008)

    Google Scholar 

  11. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies. Elsevier, Burlington (1973)

    Google Scholar 

  12. Castaing, C., Raynaud de Fitte, P.: Law of large numbers and ergodic theorem for convex weak star compact valued Gelfand-integrable mappings. In: Advances in Mathematical Economics, vol. 17, pp. 1–37. Springer, Berlin (2013)

    Google Scholar 

  13. Condat, L., Kitahara, D., Contreras, A., Hirabayashi, A.: Proximal splitting algorithms for convex optimization: a tour of recent advances, with new twists. SIAM Rev. 65(2), 375–435 (2023)

    Article  MathSciNet  Google Scholar 

  14. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, vol. 8. Springer, Berlin (2012)

    Google Scholar 

  15. Damek, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25(4), 829–858 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gorbunov, E., Hanzely, F., Richtárik, P.: A unified theory of SGD: variance reduction, sampling, quantization and coordinate descent. In: International Conference on Artificial Intelligence and Statistics, pp. 680–690. PMLR (2020)

    Google Scholar 

  17. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    MathSciNet  Google Scholar 

  18. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin (2013)

    Google Scholar 

  19. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1(4), 457 (1967)

    Article  Google Scholar 

  20. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  21. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, vol. 1364. Springer, Berlin (2009)

    Google Scholar 

  22. Rockafellar, R.T., Wets, R.J-B.: On the interchange of subdifferentiation and conditional expectations for convex functionals. Stochastics 7(3), 173–182 (1982)

    Article  MathSciNet  Google Scholar 

  23. Shapiro, A., Xu, H.: Uniform laws of large numbers for set-valued mappings and subdifferentials of random functions. J. Math. Anal. Appl. 325(2), 1390–1399 (2007)

    Article  MathSciNet  Google Scholar 

  24. Taylor, R.L., Inoue, H.: Laws of Large Numbers for Random Sets, pp. 347–360. Springer, New York (1997)

    Google Scholar 

  25. Terán, P.: On a uniform law of large numbers for random sets and subdifferentials of random functions. Stat. Probab. Lett. 78(1), 42–49 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zvi, A., Hart, S.: Law of large numbers for random sets and allocation processes. Math. Oper. Res. 6(4), 485–492 (1981)

    Article  MathSciNet  Google Scholar 

  27. Zvi, A., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probab. 3(5), 879–882 (1975)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Salim.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, A. A Strong Law of Large Numbers for Random Monotone Operators. Set-Valued Var. Anal 31, 38 (2023). https://doi.org/10.1007/s11228-023-00701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11228-023-00701-3

Keywords

Mathematics Subject Classification

Navigation