Skip to main content
Log in

Projectional Coderivatives and Calculus Rules

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can be refined as a fixed-point expression. We will also improve the generalized Mordukhovich criterion to give a complete characterization of the relative Lipschitz-like property under such a setting. Chain rules and sum rules are obtained to facilitate the application of the tool to a wider range of parametric problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9(1), 87–111 (1984)

    Article  MathSciNet  Google Scholar 

  2. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

    Book  Google Scholar 

  3. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design, vol. 58, pp. 32–46 (1992)

    Google Scholar 

  4. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183(1), 250–288 (1994)

    Article  MathSciNet  Google Scholar 

  5. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    Google Scholar 

  6. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer, Berlin (2006)

    Book  Google Scholar 

  7. Mordukhovich, B.S., Outrata, J.V.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18(2), 389–412 (2007)

    Article  MathSciNet  Google Scholar 

  8. Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program. 99(2), 311–327 (2004)

    Article  MathSciNet  Google Scholar 

  9. Huyen, D.T.K., Yen, N.D.: Coderivatives and the solution map of a linear constraint system. SIAM J. Optim. 26(2), 986–1007 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer, New York (2005)

    Google Scholar 

  11. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2013)

    Google Scholar 

  12. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Heidelberg (2009)

    Book  Google Scholar 

  13. Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. Springer, Cham (2017)

    Book  Google Scholar 

  14. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer Academic, New York (2002)

    Google Scholar 

  15. Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21(2), 151–176 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ginchev, I., Mordukhovich, B.S.: On directionally dependent subdifferentials. C. R. Acad. Bulgare Sci. 64(4), 497–508 (2011)

    MathSciNet  Google Scholar 

  17. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  18. Gfrerer, H., Outrata, J.V.: On Lipschitzian properties of implicit multifunctions. SIAM J. Optim. 26(4), 2160–2189 (2016)

    Article  MathSciNet  Google Scholar 

  19. Van Ngai, H., Théra, M.: Directional metric regularity of multifunctions. Math. Oper. Res. 40(4), 969–991 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ioffe, A.D.: On regularity concepts in variational analysis. J. Fixed Point Theory Appl. 8(2), 339–363 (2010)

    Article  MathSciNet  Google Scholar 

  21. Arutyunov, A.V., Izmailov, A.F.: Directional stability theorem and directional metric regularity. Math. Oper. Res. 31(3), 526–543 (2006)

    Article  MathSciNet  Google Scholar 

  22. Mordukhovich, B.S., Wang, B.: Restrictive metric regularity and generalized differential calculus in Banach spaces. Int. J. Math. Math. Sci. 2004(50), 2653–2680 (2004)

    Article  MathSciNet  Google Scholar 

  23. Ioffe, A.D.: Regularity on a fixed set. SIAM J. Optim. 21(4), 1345–1370 (2011)

    Article  MathSciNet  Google Scholar 

  24. Benko, M., Gfrerer, H., Outrata, J.V.: Stability analysis for parameterized variational systems with implicit constraints. Set-Valued Var. Anal. 28(1), 167–193 (2020)

    Article  MathSciNet  Google Scholar 

  25. Meng, K.W., Li, M.H., Yao, W.F., Yang, X.Q.: Lipschitz-like property relative to a set and the generalized Mordukhovich criterion. Math. Program. 189(1), 455–489 (2021)

    Article  MathSciNet  Google Scholar 

  26. Yao, W., Yang, X.: Relative Lipschitz-like property of parametric systems via projectional coderivatives. SIAM J. Optim. 33(3), 2021–2040 (2023)

    Article  MathSciNet  Google Scholar 

  27. Daniilidis, A., Pang, J.C.: Continuity and differentiability of set-valued maps revisited in the light of tame geometry. J. Lond. Math. Soc. 83(3), 637–658 (2011)

    Article  MathSciNet  Google Scholar 

  28. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2013)

    Google Scholar 

  29. Lang, S.: Introduction to Linear Algebra, 5th edn. Wellesley – Cambridge Press, Wellesley (2016)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their careful reading and valuable suggestions.

Funding

Kaiwen Meng was supported in part by the National Natural Science Foundation of China (Ref No.: 11671329, 12001445). Minghua Li was supported by the National Natural Science Foundation of China (Ref No.: 12271072) and the Natural Science Foundation of Chongqing Municipal Science and Technology Commission (Ref No.: CSTB2022NSCQ-MSX0409, CSTB2022NSCQ-MSX0406). Yang Xiaoqi was partly supported by a project from the Research Grants Council of Hong Kong (Ref No.: 15209921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfang Yao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Meng, K., Li, M. et al. Projectional Coderivatives and Calculus Rules. Set-Valued Var. Anal 31, 36 (2023). https://doi.org/10.1007/s11228-023-00698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11228-023-00698-9

Keywords

Mathematics Subject Classification

Navigation