Skip to main content
Log in

Coincidence and Fixed Points of Set-Valued Mappings Via Regularity in Metric Spaces

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper, we construct a common iterative scheme that allows to unify two important results established recently by Ioffe and Ait Mansour, Bahraoui, El Bekkali, respectively. Our results rely on a weaker concept of metric regularity, called orbital regularity. Some applications are given to approximate and/or exact coincidence double fixed point problems as well as to the perturbation stability of approximate and/or exact Milyutin regularity of set-valued mappings in metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly, S., Dontchev, A.L., Thera, M.: On one-sided Lipschitz stability of set-valued contractions. Numer. Funct. Anal. Optim. 35, 837–850 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, P., J. Mohamed, J., Bessem, S.: Banach Contraction Principle and Applications. Fixed Point Theory in Metric Spaces, p. 176. Springer, Singapore (2018)

  3. Ait Mansour, M., Bahraoui, M.A., El Bekkali, A.: A global approximate contraction mapping principle in non-complete metric spaces. J. Nonlinear Var. Anal. 4(1), 153–157 (2020)

    MATH  Google Scholar 

  4. Ait Mansour, M., Bahraoui, M.A., El Bekkali, A.: Approximate fixed points via completion. Le Matematiche LXXIV(II), 411–415 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Ait Mansour, M., Bahraoui, M.A., El Bekkali, A.: Metric Regularity and Lyusternik-Graves Theorem via Approximate Fixed Points of Set-Valued Maps in Noncomplete Metric Spaces. Set-Valued Var. Anal. 30, 233–256 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arutyunov, A.V.: Covering mappings in metric spaces and fixed points. Dokl. Akad. Nauk. 416, 151–155 (2007)

    MathSciNet  Google Scholar 

  7. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133–181 (1922)

    Article  MATH  Google Scholar 

  8. Banerjee, A., Singh, T.B.: A fixed point theorem for set-valued mappings. Appl. Math. Mech. 22, 1397–1403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chanthorn, P., Chaoha, P.: Fixed point sets of set-valued mappings. Fixed Point Theory Appl. 56, (2015). https://doi.org/10.1186/s13663-015-0305-6

  10. Beer, G.: Topologies on Closed and Closed Convex Set. Kluwer Academic Publishers, Dordrecht (1993)

  11. Ciesielski, K.: On Stefan Banach and some of his result. Banach J. Math. Anal. 1(1), 1–10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn., p. 571. Springer, New York (2006)

    MATH  Google Scholar 

  13. Combettes, P., Pesquet, J.-C.: Fixed Point Strategies in Data Science. https://arxiv.org/abs/2008.02260

  14. Dontchev, A.L., Hager, W.W.: An Inverse Mapping Theorem for Set-Valued Maps. Proc. Amer. Math. Soc. 121(2), 481–489 (1994). https://doi.org/10.2307/2160425

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd edn., p. 466. Springer, New York (2014)

    Book  MATH  Google Scholar 

  16. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Granas, A., Dugundji, J.: Fixed Point Theory, p. 690. Springer-Verlag, New York (2003)

    Book  MATH  Google Scholar 

  18. Günther, M.: “Zum Einbettungssatz von J. Nash” [On the embedding theorem of J. Nash]. Math. Nachr. (in German). 144, 165–187 (1989)

  19. Hitzler, P., Seda, A.K.: A Converse of the Banach Contraction Mapping Theorem. J. Electr. Eng. 52(10/s), 3–6 (2001)

    MATH  Google Scholar 

  20. Ioffe, A.D.: Regularity on fixed sets. SIAM J. Optim. 21(4), 1345–1370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ioffe, A.D.: Nonlinear regularity models. Math. Program. 139(1), 223–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ioffe, A.D.: Metric regularity-a survey. Part I. Theory. J. Aust. Math. Soc. 101, 188–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe, A.D.: Metric regularity-a survey. Part II. Applications. J. Aust. Math. Soc. 101, 376–417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. 495. Springer Monographs in Mathematics, Springer (2017)

  25. Istratescu, V.I.: Fixed Point Theory: An Introduction, p. 488. The Netherlands (1981)

  26. Jiang, S., Li, Z., Luo, S.: Fixed Point Theorems of Set-Valued Mappings in Partially Ordered Hausdorff Topological Spaces. Abstract and Applied Analysis 2014, 5 (2014). https://doi.org/10.1155/2014/232413

    Article  MathSciNet  MATH  Google Scholar 

  27. Jadamba, B., Khan, A.A., Migórski, S., Sama, M.: Deterministic and Stochastic Optimal Control and Inverse Problems. 1st Edition. CRC Press (2021)

  28. Kinderlehrer, D., Stampacchia, G.: Variational Inequalities in \(\mathbb{R}^{N}\). An Introduction to Variational Inequalities and Their Applications, pp. 7–22. Academic Press, New York (1980)

  29. Kirk, W.A., Khamsi, M.A.: An Introduction to Metric Spaces and Fixed Point Theory, p. 310. Wiley, New York (2001)

  30. Lim, T.-C.: On fixed-point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl 110, 436–441 (1985)

  31. Nadler JR, S.B.: Multi-valued contraction theorem. Pacific J. Math. 30(2), 475–488 (1969)

  32. Prolla, J.P.: Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5(4), 449–455 (1983)

  33. Stokey, N.L., Lucas, R.E., Jr.: Recursive Methods in Economic Dynamics, pp. 508–516. Harvard University Press, Cambridge (1989)

  34. Tron, N.H., Han, D.N., Ngai, H.V.: Nonlinear metric regularity on fixed sets. Optimization (2022). https://doi.org/10.1080/02331934.2022.2031188

Download references

Acknowledgements

This research is supported by Vietnam Ministry of Education and Training under grant number B2023-CTT-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Huu Tron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tron, N.H. Coincidence and Fixed Points of Set-Valued Mappings Via Regularity in Metric Spaces. Set-Valued Var. Anal 31, 17 (2023). https://doi.org/10.1007/s11228-023-00680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11228-023-00680-5

Keywords

Mathematics Subject Classification (2010)

Navigation