Skip to main content
Log in

Differential Inclusion Approach for Mixed Constrained Problems Revisited

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Properties of control systems described by differential inclusions are well established in the literature. Of special relevance to optimal control problems are properties concerning measurability, convexity, compactness of trajectories and Lipschitz continuity of the set valued mapping (or multifunction) defining the differential inclusion of interest. In this work we concentrate on dynamic control systems coupled with mixed state-control constraints. We characterize a class of such systems that can be described by an appropriate differential inclusion defined by a set valued mapping exhibiting “good” properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein, Z.: Pontryagin maximum principle revisited with feedbacks. Eur. J. Control. 17, 46–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin J.P., Cellina, A.: Differential inclusions: set valued maps and viability theory Springer-Verlag (1984)

  3. Aubin, J.P., Frankowska, H.: Set valued analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  4. Biswas, Md.H.A., de Pinho, M.d.R.: A Maximum Principle for Optimal Control Problems with State and Mixed Constraints. ESAIM: Control, Optimisation and Calculus of Variations (to appear) (2014)

  5. Berkovitz, L.D., Medhin, N.G.: Nonlinear optimal control theory. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, Taylor & Francis (2012)

  6. Cesari, L.: Optimization-theory and applications: problems with ordinary differential equations Springer-Verlag (1983 )

  7. Clarke, F.: The maximum principle under minimal hypotheses. SIAM J. Control Optim. 14, 1078–1091 (1976)

    Article  MATH  Google Scholar 

  8. Clarke, F.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    MATH  Google Scholar 

  9. Clarke, F., Ledyaev Yu, S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  10. Clarke F.: Necessary conditions in dynamic optimization. Mem. Amer. Math. Soc. (2005)

  11. Clarke, F, de Pinho, M.d.R.: Optimal control problems with mixed constraints. SIAM J. Control Optim. 48, 4500–4524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F., Ledyaev, Y., de Pinho, M.d.R: An extension of the schwarzkopf multiplier rule in optimal control. SIAM J. Control Optim. 49, 599–610 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clarke, F.: Functional analysis. In: Calculus of variations and optimal control, Springer, Graduate Texts in Mathematics, Vol. 267. (2013)

  14. de Pinho, M.d.R., Ferreira, M.M., Fontes, F.A.C.C.: Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM Control Optim. Calc. Var 11, 614–632 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Devdaryani, E.N., Ledyaev, Y.S.: Maximum principle for implicit control systems. Appl Math. Optim. 40, 79–103 (1999)

    Article  MathSciNet  Google Scholar 

  16. Folland, G.B.: Real Analysis, Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1999)

    Google Scholar 

  17. Kornienko, I, de Pinho, MdR: Properties of control systems with mixed constraints in the form of inequalities. Internal Report, ISR, DEEC, FEUP (2013)

  18. Loewen, P, Rockafellar, R.T.: Optimal Control of Unbounded Differential Inclusions. SIAM J. Control Optim 32(2), 442–470 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Macki, J., Strauss, A.: Introduction to Optimal Control Theory. Springer (1981)

  20. Mordukhovich, B.: Variational analysis and generalized differentiation. Vol. 1, 2. Fundamental Principles of Mathematical Sciences 330 and 331. Springer-Verlag, Berlin (2006)

    Book  Google Scholar 

  21. Rockafellar, R.T., Wets, B.: Variational Analysis, Grundlehren Math. Wiss. 317. Springer-Verlag, Berlin (1998)

    Book  Google Scholar 

  22. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions, American Mathematical Soc (2002)

  23. Vinter, R.: Optimal Control. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MdR de Pinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Pinho, M., Kornienko, I. Differential Inclusion Approach for Mixed Constrained Problems Revisited. Set-Valued Var. Anal 23, 425–441 (2015). https://doi.org/10.1007/s11228-014-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-014-0315-2

Keywords

Mathematics Subject Classification (2010)

Navigation