Skip to main content
Log in

Graph regularized autoencoding-inspired non-negative matrix factorization for link prediction in complex networks using clustering information and biased random walk

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The task of link prediction has become a fundamental research problem in the analysis of complex networks. However, most existing non-negative matrix factorization (NMF) methods are decoding models and solely consider a single type of structural information around node pairs in networks, resulting in sub-optimal prediction accuracy. To solve these limitations, we propose a novel model, namely Graph Regularized Autoencoder-inspired Non-negative Matrix Factorization via jointly Clustering information and Biased random walk (GRANMFCB for short), for link prediction. Specifically, GRANMFCB comprises both encoder and decoder components, fully leveraging the advantages of autoencoders. In addition, clustering information and high-order structures are utilized to preserve abundant structural information around node pairs and against sparsity of networks. Finally, effective iterative multi-multiplication updating rules are proposed to optimize the objective function and the convergence is strictly proved. Extensive experimental results on twelve real-world networks show that our proposed model outperforms the state-of-the-art approaches. Codes are available at https://github.com/litongf/GRANMFCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar A, Singh SS, Singh K et al (2020) Link prediction techniques, applications, and performance: a survey. Physica A: Stat Mech Appl 553:124289

    Article  MathSciNet  Google Scholar 

  2. Wang W, Feng Y, Jiao P et al (2017) Kernel framework based on non-negative matrix factorization for networks reconstruction and link prediction. Knowl-Based Syst 137(Dec 1):104–114

    Article  Google Scholar 

  3. Yao Y, Zhang R, Yang F et al (2018) Link prediction in complex networks based on the interactions among paths. Physica A: Stat Mech Appl 510:52–67

    Article  Google Scholar 

  4. Yao Y, Cheng T, Li X et al (2023) Link prediction based on the mutual information with high-order clustering structure of nodes in complex networks. Physica A: Stat Mech Appl 610:128428

    Article  MathSciNet  Google Scholar 

  5. Akbar JA, Anthony K, Wu FX (2020) MDIPA: a microRNA-drug interaction prediction approach based on non-negative matrix factorization. Bioinformatics 36(20):5061–5067

    Article  Google Scholar 

  6. Lv L, Zhou T (2011) Link prediction in complex networks: a survey. Physica A: Stat Mech Appl 390:1150–1170

    Article  Google Scholar 

  7. Gu Q, Zhou J, Chris H. Q. Ding (2010) Collaborative filtering: weighted nonnegative matrix factorization incorporating user and item graphs. In: SIAM International Conference on Data Mining, pp 199–210

  8. Zhao Z, Gou Z, Du Y et al (2022) A novel link prediction algorithm based on inductive matrix completion. Expert Syst Appl 188:116033

    Article  Google Scholar 

  9. Xia F, Sun K, Yu S et al (2021) Graph learning: a survey. IEEE Trans Artif Intell 2(2):109–127

    Article  Google Scholar 

  10. Tang M, Yu W, Li X et al (2022) Cold-start link prediction via weighted symmetric nonnegative matrix factorization with graph regularization. Comp Syst Sci Eng 43(3):1069–1084

    Article  Google Scholar 

  11. Menon AK, Elkan C (2011) Link prediction via matrix factorization. In: Machine learning and knowledge discovery in databases - European Conference, ECML PKDD 2011, Athens, Greece, September 5–9, 2011, Proceedings, Part II

  12. Chen B, Li F, Chen S et al (2017) Link prediction based on non-negative matrix factorization. PLoS ONE 12(8):e0182968

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma X, Sun P, Qin G (2017) Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Patt Recognit 71:361–374

    Article  Google Scholar 

  14. Chen G, Xu C, Wang J et al (2020) Nonnegative matrix factorization for link prediction in directed complex networks using pagerank and asymmetric link clustering information. Expert Syst Appl 148:113290

    Article  Google Scholar 

  15. Chen G, Xu C, Wang J et al (2019) Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network. Neurocomputing 369(Dec 5):50–60

    Article  Google Scholar 

  16. Mahmoodi R, Seyedi SA, Akhlaghian Tab F et al (2023) Link prediction by adversarial nonnegative matrix factorization. Knowl-Based Syst 280:110998

    Article  Google Scholar 

  17. MartAnez V, Berzal F, Cubero JC (2016) A survey of link prediction in complex networks. ACM Comput Surv 49(4):1–33

    Article  Google Scholar 

  18. Lorrain F, White HC (1971) The structural equivalence of individuals in social networks. J Math Sociol 1(1):49–80

    Article  Google Scholar 

  19. Adamic LA, Adar E (2003) Friends and neighbors on the web. Social Netw 25(3):211–230

    Article  Google Scholar 

  20. Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. Eur Phys J B 71(4):623–630

    Article  CAS  Google Scholar 

  21. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  Google Scholar 

  22. Salton G (1983) Introduction to modern information retrieval. Inform Process Manag 19:402–403

    Article  Google Scholar 

  23. Ahmad I, Akhtar MU, Noor S et al (2020) Missing link prediction using common neighbor and centrality based parameterized algorithm. Scient Report 10(1):364

    Article  CAS  Google Scholar 

  24. Rafiee S, Salavati C, Abdollahpouri A (2020) Cndp: link prediction based on common neighbors degree penalization. Physica A: Stat Mech Appl 539:122950

    Article  Google Scholar 

  25. Liu W, Lv L (2010) Link prediction based on local random walk. Europhys Lett 89(5):58007

    Article  Google Scholar 

  26. Aziz F, Gul H, Muhammad I et al (2020) Link prediction using node information on local paths. Physica A: Stat Mech Appl 557:124980

    Article  Google Scholar 

  27. Leicht EA, Holme P, Newman MEJ (2006) Vertex similarity in networks. Phys Rev E Stat Nonlin Soft Matt Phys 73(2 Pt 2):026120

    Article  CAS  Google Scholar 

  28. Brin S (2012) The anatomy of a large-scale hypertextual Web search engine. Comp Netw ISDN Syst 30(1):107–177

    Google Scholar 

  29. Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link prediction. In: Seventh IEEE International Conference on Data Mining (ICDM 2007) pp. 322–331

  30. Clauset A, Moore C, Newman ME (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    Article  CAS  PubMed  Google Scholar 

  31. Guimera R, Sales-Pardo M et al (2009) Missing and spurious interactions and the reconstruction of complex networks. Proceed Nat Acad Sci 106(52):22073–22078

    Article  CAS  Google Scholar 

  32. Kuang J, Scoglio C (2021) Layer reconstruction and missing link prediction of a multilayer network with maximum \(a \mathit{posteriori}\) estimation. Phys Rev E 104:024301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pech R, Hao D et al (2017) Link prediction via matrix completion. EPL (Europhys Lett) 117(3):38002

    Article  Google Scholar 

  34. Wang Z, Liang J, Li R (2018) A fusion probability matrix factorization framework for link prediction. Knowl-Based Syst 159:72–85

    Article  Google Scholar 

  35. Zhuangwei Shi CJXQYYHan Zhang (2021) A representation learning model based on variational inference and graph autoencoder for predicting lncrna-disease associations. BMC Bioinform 22(1):136

    Article  Google Scholar 

  36. Yulian Ding BLFXWXiujuan Lei (2022) Predicting mirna-disease associations based on multi-view variational graph auto-encoder with matrix factorization. IEEE J Biomed Health Inform 26(1):446–457

    Article  PubMed  Google Scholar 

  37. Chen Jin KLHZZhuangwei Shi (2022) Predicting mirna-disease association based on neural inductive matrix completion with graph autoencoders and self-attention mechanism. Biomolecules 12(1):64

    Article  PubMed  Google Scholar 

  38. Gao H, Sun J et al (2023) Predicting metabolite-disease associations based on auto-encoder and non-negative matrix factorization. Brief Bioinform 24(5):1259

    Article  Google Scholar 

  39. Zhang M, Chen Y (2017) Weisfeiler-lehman neural machine for link prediction. In: the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 575–583

  40. Li JC, Zhao DL, Ge BF et al (2017) A link prediction method for heterogeneous networks based on bp neural network. Physica A: Stat Mech Appl 495:1–17

    Article  Google Scholar 

  41. Zhou M, Jin H, Wu Q et al (2022) Betweenness centrality-based community adaptive network representation for link prediction. Appl Intell 52(4):3545–3558

    Article  Google Scholar 

  42. Esa B, Mr A, Ma B (2015) Structural link prediction based on ant colony approach in social networks. Physica A: Stat Mech Appl 419:80–94

    Article  Google Scholar 

  43. Chen J, Wu Y, Xu X et al (2019) Pso-ane: adaptive network embedding with particle swarm optimization. IEEE Trans Comput Social Syst 6(4):649–659

    Article  Google Scholar 

  44. Cao Z, Zhang Y et al (2019) A chaotic ant colony optimized link prediction algorithm. IEEE Trans Syst, Man, Cybern: Syst 99:1–15

    CAS  Google Scholar 

  45. Arrar D, Kamel N, Lakhfif A (2023) A comprehensive survey of link prediction methods. J Supercomp 80(3):3902–3942

    Article  Google Scholar 

  46. Zhou T (2023) Discriminating abilities of threshold-free evaluation metrics in link prediction. Physica A: Stat Mech Appl 615:128529

    Article  Google Scholar 

  47. Hanley J (1982) The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  48. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: International Conference on Neural Information Processing Systems, p 535-541

  49. Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401(6755):788–791

    Article  CAS  PubMed  Google Scholar 

  50. Qian Y, Dong E, Zheng X (2014) Link prediction via nonnegative matrix factorization enhanced by blocks information. In: 2014 10th International Conference on Natural Computation (ICNC) IEEE, pp. 823–827

  51. He X, Huang TS, Cai D et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Patt Anal Mach Intell 33(08):1548–1560

    Article  Google Scholar 

  52. Sun BJ, Shen H, Gao J, et al (2017) A non-negative symmetric encoder-decoder approach for community detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, p. 597–606

  53. Wu Z, Lin Y, Wan H et al (2016) Predicting top-l missing links with node and link clustering information in large-scale networks. J Stat Mech: Theory Exper 8:083202

    Article  Google Scholar 

  54. Cheng Y, Sun M, Liu Z et al (2017) Fast network embedding enhancement via high order proximity approximation. Int Jt Conf Artif Intell 894:3900

    Google Scholar 

  55. Yang C, Liu Z, Zhao D et al (2015) Network representation learning with rich text information. IJCAI 2015:2111–2117

    Google Scholar 

  56. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Ding C, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix factorizations. IEEE Trans Patt Anal Mach Intell 32(1):45–55

    Article  Google Scholar 

  58. Kunegis J (2013) KONECT – The Koblenz Network Collection, pp 1343–1350

  59. Guo G, Zhang J, Yorke-Smith N (2013) A novel evidence-based Bayesian similarity measure for recommender systems

  60. Newman M (2001) Clustering and preferential attachment in growing networks. Phys Rev E Stat Nonlin Soft Matter Phys 64:025102

    Article  CAS  PubMed  Google Scholar 

  61. Pech R, Hao D, Lee YL et al (2019) Link prediction via linear optimization. Physica A: Stat Mech Appl 528:121319

    Article  MathSciNet  Google Scholar 

  62. Liu XC, Meng DQ, Zhu XZ et al (2020) Link prediction based on contribution of neighbors. Int J Modn Phys C 31(11):2050158

    Article  Google Scholar 

  63. Wu Z, Lin Y, Wang J et al (2016) Link prediction with node clustering coefficient. Physica A: Stat Mech Appl 452:1–8

    Article  Google Scholar 

  64. Zhou T, Lee YL, Wang G (2021) Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Physica A: Stat Mech Appl 564:125532

    Article  Google Scholar 

  65. Liu Z, Zhang QM, Lu L et al (2011) Link prediction in complex networks: a local Naive Bayes model. EPL (Europhys Lett) 96:48007

    Article  Google Scholar 

  66. Tian Y, Nie G, Tian H et al (2023) Impact of endpoint structure attributes on local information algorithms based on link prediction. Computing 105(1):115–129

    Article  MathSciNet  Google Scholar 

  67. Chen G, Wang H, Fang Y et al (2022) Link prediction by deep non-negative matrix factorization. Expert Syst Appl 188:115991

    Article  Google Scholar 

  68. Cai J, Hu J, Tang X et al (2020) Deep historical long short-term memory network for action recognition. Neurocomputing 407:428–438

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Qinghai Normal University young and middle-aged research fund project(2023QZR011), Qinghai Key Laboratory of Internet of Things, Focus on research and development and achievement transformation project in Qinghai province (Grant No: 2022-GX-155), the National Natural Science Foundation of China (No. 62366030), the Gansu Provincial Natural Science Foundation (No. 23JRRA8222), the Higher Education Innovation Fund project of Gansu (No. 2022A-022), the Open Project of Key Laboratory of Linguistic and Cultural Computing Ministry of Education (No. KFKT202304).

Author information

Authors and Affiliations

Authors

Contributions

TL and RZ Conceptualization, Methodology, Software, Writing—original draft, Visualization, Investigation, Validation, Writing—review & editing, Supervision. YY, YL, JM and JT: Writing—review & editing, Data curation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Tongfeng Li or Ruisheng zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Parameters of compared baselines

Appendix A: Parameters of compared baselines

The rest of parameters of compared baselines are set as their suggestion values. For LO, the \(\alpha\) is set to 0.0001 and the \(\beta _{1}\) of CNDP is set to 1.8. The parameters of NC and LPANMF are respectively set to 0.85 and 2.2. Besides, the layer configure information of FSSDNMF is set as [64 32 16] on the networks Convote, Filmtrust, Adolescent health, Powergrid, Physicians, Bcspr09, Football, Pdzbase, Dvdtrust, Chess and Gnutella. For network Karate, the layer configure information of FSSDNMF is set as [16 8 4].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., zhang, R., Yao, Y. et al. Graph regularized autoencoding-inspired non-negative matrix factorization for link prediction in complex networks using clustering information and biased random walk. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06013-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06013-z

Keywords

Navigation