Skip to main content
Log in

Hamiltonian cycle embedding with fault-tolerant edges and adaptive diagnosis in half hypercube

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Diagnosis is an important technique for fault detection and location in interconnection network. The half hypercube, constructed from the hypercube, has been proven to possess several advantageous properties for interconnection networks, such as symmetry, smaller diameter, fewer edges and lower overhead. In this paper, we study the fault-tolerant embedding of Hamiltonian cycles and design an adaptive diagnosis algorithm for the half hypercube. Firstly, we prove that the half hypercube is Hamiltonian and propose an algorithm to construct a Hamiltonian cycle in the network. Furthermore, we prove that the half hypercube is Hamiltonian with no more than \((\lceil n/2\rceil -1)\) faulty edges. Finally, we design a parallel adaptive diagnosis scheme under the PMC model, a system-level diagnosis model proposed by P, M, and C, which can identify almost all faulty vertices in five rounds. Simulation results demonstrate that the proposed algorithm is more effective, reducing running time by approximately 50% when compared to the Hamiltonian cycle embedding algorithm for the hypercube with the same dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abraham S (1991) The twisted cube topology for multiprocessor: a study in network asymmetry. J Parallel Distrib Comput 13(1):104–110

    Article  Google Scholar 

  2. Chen Y-C, Huang Y-Z, Hsu L-H, Tan JJM (2010) A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance. J Supercomput 54(2):229–238

    Article  Google Scholar 

  3. Chen J-C, Lai C-J, Tsai C-H (2014) A three-round adaptive diagnostic algorithm in a distributed system modeled by dual-cubes. Int J Found Comput Sci 25(2):125–139

    Article  MathSciNet  Google Scholar 

  4. Du X, Cheng C, Han Z, Fan W, Ding S (2023) Hamiltonian properties of HCN and BCN networks. J Supercomput 79(2):1622–1653

    Article  Google Scholar 

  5. El-Amawy A, Latifi S (1991) Properties and performance of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42

    Article  Google Scholar 

  6. Feng C, Bhuyan LN, Lombardi F (1996) Adaptive system-level diagnosis for hypercube multiprocessors. IEEE Trans Comput 45(10):1157–1170

    Article  Google Scholar 

  7. Fujita S, Araki T (2004) Three-round adaptive diagnosis in binary n-cubes. Lect Notes Comput Sci 3341:442–451

    Article  MathSciNet  Google Scholar 

  8. Ghose K, Desai KR (1995) Hierarchical cubic network. IEEE Trans Parallel Distrib Syst 6(4):427–435

    Article  Google Scholar 

  9. Harary F, Hayes JP, Wu H-J (1988) A survey of the theory of hypercube graphs. Comput Math Appl 15(4):277–289

    Article  MathSciNet  Google Scholar 

  10. Kim J-S, Kim M-H, Lee H-O (2013) Analysis and design of a half hypercube interconnection network. Multimed Ubiquitous Eng 240:537–543

    Article  Google Scholar 

  11. Kranakis E, Pelc A (2000) Better adaptive diagnosis of hypercubes. IEEE Trans Comput 49(10):1013–1020

    Article  MathSciNet  Google Scholar 

  12. Lai P-L, Chiu M-Y, Tsai C-H (2013) Three round adaptive diagnosis in hierarchical multiprocessor systems. IEEE Trans Reliab 62(3):608–617

    Article  Google Scholar 

  13. Latifi S, Zheng S-Q, Bagherzadeh N (1992) Optimal ring embedding in hypercubes with faulty links. In: Proceedings of the IEEE Symposium on Fault-Tolerant Computing, pp 178–184

  14. Lin L, Xu L, Zhou S, Hsieh S-Y (2016) The extra, restricted connectivity and conditional diagnosability of split-Star networks. IEEE Trans Parallel Distrib Syst 27(2):533–545

    Article  CAS  Google Scholar 

  15. Lin L, Huang Y, Lin Y, Hsieh S-Y, Xu L (2022) FFNLFD: fault diagnosis of multiprocessor systems at local node with fault-free neighbors under PMC model and MM* model. IEEE Trans Parallel Distrib Syst 33(7):1739–1751

    Google Scholar 

  16. Lin L, Huang Y, Xu L, Hsieh S-Y (2022) A pessimistic fault diagnosability of large-scale connected networks via extra connectivity. IEEE Trans Parallel Distrib Syst 33(2):415–428

    Article  Google Scholar 

  17. Li Y, Peng S, Chu W (2002) Hamiltonian cycle embedding for fault tolerance in dual-cube. In: IASTED International Conference on Networks, Parallel Distributed Processing Application, pp 1–6

  18. Liu J, Zhou S, Wang D, Zhang H (2022) Component diagnosability in terms of component connectivity of hypercube-based compound networks. J Parallel Distrib Comput 162:17–26

    Article  Google Scholar 

  19. Liu X, Zhou S, Cheng E, Zhang Q (2023) Reliability analysis of the generalized balanced hypercube. Theor Comput Sci 942:297–311

    Article  MathSciNet  Google Scholar 

  20. Lv H, Zhang H (2014) Hyper-Hamiltonian laceability of balanced hypercubes. J Supercomput 68(1):302–314

    Article  Google Scholar 

  21. Lv M, Zhou S, Sun X, Lian G, Chen G (2018) The g-good-neighbour conditional diagnosability of multiprocessor system based on half hypercube. Int J Comput Math Comput Syst Theory 3(3):160–176

    Article  MathSciNet  Google Scholar 

  22. Nakajima K (1981) A new approach to system diagnosis. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, pp 697–706

  23. Okashita A, Araki T, Shibata Y (2003) An optimal adaptive diagnosis of butterfly networks. IEICE Trans Fundam Electron Commun Comput Sci 86(A(5)):1008–1018

    Google Scholar 

  24. Okashita A, Araki T, Shibata Y (2005) Adaptive diagnosis of variants of the hypercube. IEICE Trans Fundam Electron Commun Comput Sci 88(A(3)):728–735

    Article  ADS  Google Scholar 

  25. Pai K-J, Wu R-Y, Peng S-L, Chang J-M (2023) Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting. J Supercomput 79(4):4126–4145

    Article  Google Scholar 

  26. Preparata Franco P, Gernot Metze, Chien Robert T (1967) On the connection assignment problem of diagnosable systems. IEEE Trans Electron Comput 16(6):848–854

    Article  Google Scholar 

  27. Rowley RA, Bose B (1994) Fault-tolerant ring embedding in de Bruijn networks. IEEE Trans Comput 46(12):1480–1486

    Article  Google Scholar 

  28. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37(7):867–872

    Article  Google Scholar 

  29. Seitz CL (1985) The cosmic cube. Commun ACM 28(1):22–33

    Article  MathSciNet  Google Scholar 

  30. Shih Y-K, Chuang H-C, Kao S-S, Tan JJM (2010) Mutually independent Hamiltonian cycles in dual-cubes. J Supercomput 54(2):239–251

    Article  Google Scholar 

  31. Sim H, Oh J, Lee H (2010) Multiple reduced hypercube (MRH): a new interconnection network reducing both diameter and edge of hypercube. Int J Grid Distrib Comput 3(1):19–30

    Google Scholar 

  32. Song J, Lin L, Huang Y, Hsieh S-Y (2023) Intermittent fault diagnosis of split-star networks and its applications. IEEE Trans Parallel Distrib Syst 34(4):1253–1264

    Article  Google Scholar 

  33. Tseng YC, Chang SH, Sheu JP (1997) Fault-tolerant ring embedding in a star graph with both link and node failures. IEEE Trans Parallel Distrib Syst 8(12):1185–1195

    Article  Google Scholar 

  34. Wang D (2001) Embedding hamiltonian cycles into folded hypercubes with link faults. J Parallel Distrib Comput 61(4):545–564

    Article  Google Scholar 

  35. Wang N, Yen C, Chu C (2005) Multicast communication in wormhole routed symmetric networks with hamiltonian cycle model. J Syst Archit 51(3):165–183

    Article  Google Scholar 

  36. Xu J (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers

    Book  Google Scholar 

  37. Ye L-C, Liang J-R (2015) Five-round adaptive diagnosis in Hamiltonian networks. IEEE Trans Parallel Distrib Syst 26(9):2459–2464

    Article  Google Scholar 

  38. Zhang H, Zhou S, Liu J, Zhou Q, Yu Z (2021) Reliability evaluation of DQcube based on g-good neighbor and g-component fault pattern. Discrete Appl Math 305:179–190

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China under grant (Nos. 62102196, 62272244, 62372248, 62,302,235), Natural Science Foundation of Jiangsu Province (No. BK20200753), Jiangsu Postdoctoral Science Foundation Funded Project (No. 2021K096A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjie Lv.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Liu, X. & Lv, M. Hamiltonian cycle embedding with fault-tolerant edges and adaptive diagnosis in half hypercube. J Supercomput 80, 5654–5674 (2024). https://doi.org/10.1007/s11227-023-05674-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05674-6

Keywords

Navigation