Skip to main content

Advertisement

Log in

Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is driving the digital revolution. AlSome palliative measures aremost all economic sectors are becoming “Smart” thanks to the analysis of data generated by IoT. This analysis is carried out by advance artificial intelligence (AI) techniques that provide insights never before imagined. The combination of both IoT and AI is giving rise to an emerging trend, called AIoT, which is opening up new paths to bring digitization into the new era. However, there is still a big gap between AI and IoT, which is basically in the computational power required by the former and the lack of computational resources offered by the latter. This is particularly true in rural IoT environments where the lack of connectivity (or low-bandwidth connections) and power supply forces the search for “efficient” alternatives to provide computational resources to IoT infrastructures without increasing power consumption. In this paper, we explore edge computing as a solution for bridging the gaps between AI and IoT in rural environment. We evaluate the training and inference stages of a deep-learning-based precision agriculture application for frost prediction in modern Nvidia Jetson AGX Xavier in terms of performance and power consumption. Our experimental results reveal that cloud approaches are still a long way off in terms of performance, but the inclusion of GPUs in edge devices offers new opportunities for those scenarios where connectivity is still a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.laverdad.es/murcia/ultimas-heladas-region-20190404113101-nt.html.

  2. http://www.hidroconta.com/.

  3. https://lora-alliance.org/.

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp 265–283

  2. Aliberti A, Bottaccioli L, Macii E, Di Cataldo S, Acquaviva A, Patti E (2019) A non-linear autoregressive model for indoor air-temperature predictions in smart buildings. Electronics 8(9):979

    Article  Google Scholar 

  3. Bah MD, Dericquebourg E, Hafiane A, Canals R (2018) Deep learning based classification system for identifying weeds using high-resolution UAV imagery. In: Science and Information Conference. Springer, pp 176–187

  4. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. ACM, pp 13–16

  5. Boubin J, Chumley J, Stewart C, Khanal S (2019) Autonomic computing challenges in fully autonomous precision agriculture. In: 2019 IEEE International Conference on Autonomic Computing (ICAC), pp 11–17. IEEE

  6. Cass S (2019) Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE Spectr 56(5):16–17

    Article  Google Scholar 

  7. Chen X, Shi Q, Yang L, Xu J (2018) Thriftyedge: Resource-efficient edge computing for intelligent IoT applications. IEEE Netw 32(1):61–65

    Article  Google Scholar 

  8. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E (2014) cuDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759

  9. Farooq MS, Riaz S, Abid A, Abid K, Naeem MA (2019) A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access 7:156237–156271

    Article  Google Scholar 

  10. Gondchawar N, Kawitkar R (2016) Iot based smart agriculture. Int J Adv Res Comput Commun Eng 5(6):838–842

    Google Scholar 

  11. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  12. Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 6645–6649. IEEE

  13. Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418–424

    Article  Google Scholar 

  14. Guillén-Navarro MA, Martínez-España R, Llanes A, Bueno-Crespo A, Cecilia JM (2020) A deep learning model to predict lower temperatures in agriculture. J Ambient Intell Smart Environ 12(1):21–34

    Article  Google Scholar 

  15. Guillén-Navarro MA, Martínez-España R, López B, Cecilia JM (2019) A high-performance IoT solution to reduce frost damages in stone fruits. Concurr Comput Pract Exper. https://doi.org/10.1002/cpe.5299

    Article  Google Scholar 

  16. Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd, Birmingham

    Google Scholar 

  17. Halawa H, Abdelhafez HA, Boktor A, Ripeanu M (2017) Nvidia Jetson platform characterization. In: EuropEan Conference on Parallel Processing. Springer, pp 92–105

  18. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  19. Kamilaris A, Prenafeta-Boldu FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90

    Article  Google Scholar 

  20. Khosravi A, Koury R, Machado L, Pabon J (2018) Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustain Energy Technol Assessm 25:146–160

    Google Scholar 

  21. Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-Runoff modelling using Long-Short-Term-Memory (LSTM) networks. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-247

  22. Kussul N, Lavreniuk M, Skakun S, Shelestov A (2017) Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sens Lett 14(5):778–782

    Article  Google Scholar 

  23. Kuwata K, Shibasaki R (2015) Estimating crop yields with deep learning and remotely sensed data. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 858–861

  24. Li Y, Zhao K, Chu X, Liu J (2013) Speeding up k-means algorithm by gpus. J Comput Syst Sci 79(2):216–229

    Article  MathSciNet  Google Scholar 

  25. Liakos K, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674

    Article  Google Scholar 

  26. Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M (2018) Deep learning for iot big data and streaming analytics: A survey. IEEE Commun Surv Tutor 20(4):2923–2960

    Article  Google Scholar 

  27. Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419

    Article  Google Scholar 

  28. Pierpaoli E, Carli G, Pignatti E, Canavari M (2013) Drivers of precision agriculture technologies adoption: a literature review. Proc Technol 8:61–69

    Article  Google Scholar 

  29. Qi S, Wan L, Fu B (2018) Multisource and multiuser water resources allocation based on genetic algorithm. J Supercomput, pp 1–9

  30. Rodriguez SAB, Klein L, Schrott AG, Van Kessel TG (2019) Autonomous mobile platform and variable rate irrigation method for preventing frost damage . US Patent App. 10/219,448

  31. Salman AG, Heryadi Y, Abdurahman E, Suparta W (2018) Single layer & multi-layer long short-term memory (lstm) model with intermediate variables for weather forecasting. Proc Comput Sci 135:89–98

    Article  Google Scholar 

  32. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39

    Article  Google Scholar 

  33. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput 8(4):14–23

    Article  Google Scholar 

  34. Seide F, Agarwal A (2016) CNTK: Microsoft’s open-source deep-learning toolkit. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 2135–2135

  35. Simoens P, Xiao Y, Pillai P, Chen Z, Ha K, Satyanarayanan M (2013) Scalable crowd-sourcing of video from mobile devices. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp 139–152. ACM

  36. Zamora-Izquierdo MA, Santa J, Martínez JA, Martínez V, Skarmeta AF (2019) Smart farming iot platform based on edge and cloud computing. Biosyst Eng 177:4–17

    Article  Google Scholar 

  37. Zaytar MA, El Amrani C (2016) Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. Int Comput Appl 143(11):7–11

    Google Scholar 

  38. Zhang N, Wang M, Wang N (2002) Precision agriculture a worldwide overview. Comput Electron Agric 36(2–3):113–132

    Article  Google Scholar 

  39. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc IEEE 107(8):1738–1762

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants RTI2018-096384-B-I00 (AEI/FEDER, UE) and RTC-2017-6389-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Cecilia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén, M.A., Llanes, A., Imbernón, B. et al. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J Supercomput 77, 818–840 (2021). https://doi.org/10.1007/s11227-020-03288-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03288-w

Keywords

Navigation