Skip to main content
Log in

p-Epidemic forwarding method for heterogeneous delay-tolerant networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Delay-tolerant network (DTN) is a kind of wireless network that is specified by its discontinuous connectivity among the nodes. Due to the increasing use of wireless communications and infrastructure-less networks, DTNs should be considered accurate. epidemic routing, as a replication-based routing protocol is defined to overcome the intermittent connectivity issue in these networks. In this routing, all nodes maintain their buffer messages index which is called the summary vectors. The nodes exchange their summary vectors when they meet their neighbors. All carried messages by a node that are not presented in its neighbors are transmitted. So, a node sends multiple copies of a message to other nodes that do not have that message. The replication process consumes a high amount of network resources such as node energy. To address the resource problem, this paper intends to propose an effective mechanism for message delivering into those networks. This work formulated an energy-efficient probabilistic forwarding method of heterogeneous sets of nodes having two different transmission radii as well as two different amounts of available energies. We propose a static policy-based message forwarding method of two different forwarding probabilities for the heterogeneous sets of nodes. Our analytical result is supported by the simulation outcomes in terms of message delivery probabilities and the number of transmissions of the network. The results of this work can be considered in new applications such as delay-tolerant Internet of things.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao J, Cao G (2008) VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans Veh Technol 57(3):1910–1922

    Article  Google Scholar 

  2. Farnoud F, Valace S (2009) Reliable broadcast of safety messages in vehicular ad hoc networks. In: Proceedings of IEEE INFOCOM, pp 226–234

  3. Burgess J, Gallagher B, Jensen D, Levine BN (2006) MaxProp: routing for vehicle-based disruption-tolerant networks. In: Proceedings of IEEE INFOCOM, pp 1–11

  4. Yang X, Liu J, Zhao F, Vaidya N (2004) A vehicle-to-vehicle communication protocol for cooperative collision warning. In: Proceedings of MOBIQUITOUS, pp 114–123

  5. Fall K (2003) A delay-tolerant network architecture for challenged internet. In: Proceedings of ACM SIGCOM, pp 27–34

  6. Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K, Weiss H (2003) Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun Mag 41(6):128–136

    Article  Google Scholar 

  7. Gao W, Li Q, Zhao B, Cao G (2009) Multicasting in delay-tolerant networks: a social network perspective. In: Proceedings of ACM MobiHoc, pp 299–308

  8. Blumenthal M, Clark D (2001) Rethinking the design of the internet: the end-to-end arguments vs. the brave new world. ACM Trans Internet Technol 1(1):70–109

    Article  Google Scholar 

  9. Jain S, Fall K, Patra R (2004) Routing in a delay-tolerant network. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp 145–158

  10. Zhang Z (2006) Routing in intermittently connected mobile ad hoc networks and delay-tolerant networks: overview and challenges. Commun Surv Tuts 8(1):24–37

    Article  Google Scholar 

  11. Fall K, Farrell S (2008) DTN: an architectural retrospective. IEEE J Sel Areas Commun 26(5):828–836

    Article  Google Scholar 

  12. Vahdat A, Becker D (2000) Epidemic routing for partially connected ad hoc networks. Duke Univ, Durham, NC. Tech Rep CS-200006

  13. Groenevelt R, Nain P, Koole G (2005) The message delay in mobile ad hoc networks. Perform Eval 62(1–4):210–228

    Article  Google Scholar 

  14. Haas Z, Halpern J, Li L (2006) Gossip-based ad hoc routing. IEEE/ACM Trans Netw 14(3):479–491

    Article  Google Scholar 

  15. Spyropoulos T, Psounis K, Raghavendra C (2008) Efficient routing in intermittently connected mobile networks: the multiple-copy cases. IEEE/ACM Trans Netw 16(1):77–90

    Article  Google Scholar 

  16. Hui P, Crowcroft J, Yoneki E (2008) Bubble rap: social-based forwarding in delay-tolerant networks. In: Proceedings of ACM MobiHoc, pp 241–250

  17. Balasubramanian A, Levin B, Venkataramani A (2007) DTN routing as a resource allocation problem. In: Proceedings of ACM SIGCOMM, pp 373–384

  18. Acer U, Kalyanaraman S, Abouzeid A (2007) Weak state routing for large-scale dynamic networks. In: Proceedings of ACM MobiCom, pp 290–301

  19. Krifa A, Spyropoulos T (2008) Optimal buffer management policies for delay-tolerant networks. In: Proceedings of IEEE SECON, pp 260–268

  20. Krifa A, Barakat C, Spyropoulos T (2008) An optimal joint scheduling and drop policy for delay-tolerant networks. In: Proceedings of WoWMoM, pp 1–6

  21. Hay D, Giaccone P (2009) Optimal routing and scheduling for deterministic delay-tolerant networks. In: Proceedings of IEEE WONS, pp 25–32

  22. Liu C, Wu J (2009) An optimal probabilistic forwarding protocol in delay-tolerant networks. In: Proceedings of ACM MobiHoc, pp 105–114

  23. Zhang X, Neglia G, Kurose J, Towsley D (2007) Performance modeling of epidemic routing. Comput Netw 51(10):2867–2891

    Article  Google Scholar 

  24. Spyropoulos T, Turletti T, Obraczka K (2009) Routing in delay-tolerant networks comprising heterogeneous node populations. IEEE Trans MobiCom 8(8):1132–1147

    Google Scholar 

  25. Small T, Haas Z (2005) Resource and performance tradeoffs in delay tolerant wireless networks. In: Proceedings of WDTN, pp 260–267

  26. Neglia G, Zhang X (2006) Optimal delay-power tradeoff in sparse delay tolerant networks: a preliminary study. In: Proceedings of CHANTS, pp 237–244

  27. Banerjee N, Corner MD, Towsley D, Levine BN (2008) Relays, base stations, and meshes: enhancing mobile networks with infrastructure. In: Proceedings of MobiCom, pp 81–91

  28. Ip YK, Lau WC, Yue OC (2008) Performance modeling of epidemic routing with heterogeneous node types. In: Proceedings of IEEE ICC, pp 219–224

  29. Benamar N, Singh KD, Benamar M, El Ouadghiri D, Bonnin JM (2014) Routing protocols in vehicular delay tolerant networks: a comprehensive survey. Comput Commun 48:141–158

    Article  Google Scholar 

  30. Bai L, Ma X, Ouyang Z, Zhan X (2014) Heterogeneous probabilistic model based spray routing protocol for delay tolerant networks. In: 6th International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, pp 340–345

  31. Thakur R, Bansal KL, Kappalli M (2016) An energy efficient hybrid routing strategy for delay tolerant networks. In: 4th International Conference on Parallel, Distributed and Grid Computing (PDGC), pp 720–725

  32. Bista BB, Rawat DB (2016) Energy consumption and performance of delay tolerant network routing protocols under different mobility models. In: 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp 325–330

  33. Cabacas RA, Nakamura H, Ra IH (2014) Energy consumption analysis of delay tolerant network routing protocols. Int J Softw Eng Appl 8(2):1–10

    Article  Google Scholar 

  34. De Rango F, Amelio S, Fazio P (2015) Epidemic strategies in delay tolerant networks from an energetic point of view: main issues and performance evaluation. J Netw 10(01):4–14

    Google Scholar 

  35. Bista BB (2016) Improving energy consumption of epidemic routing in delay tolerant networks. In: 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp 278–283

  36. Wu Y, Deng S, Huang H (2015) Performance analysis of hop-limited epidemic routing in DTN with limited forwarding times. Int J Commun Syst 28(15):2035–2050

    Article  Google Scholar 

  37. Wu J, Zhu Y, Liu L, Yu B, Pan J (2016) Energy-efficient routing in multi-community DTN with social selfishness considerations. In: Global Communications Conference (GLOBECOM), pp 1–7

  38. Li Y, Jiang Y, Jin D, Su L, Zeng L, Wu D (2010) Energy-efficient optimal opportunistic forwarding for delay-tolerant networks. IEEE Trans Veh Technol 59(9):4500–4512

    Article  Google Scholar 

  39. Chaithanya Manam VK, Mahendran V, Siva Ram Murthy C (2012) Performance modeling of routing in delay-tolerant networks with node heterogeneity. In: IEEE COMSNETS, pp 1–10

  40. Keränen A, Ott J, Kärkkäinen T (2009) The ONE simulator for DTN protocol evaluation. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, ICST

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Coefficients of (18) are calculated as follows:

$$\begin{aligned}&T=\alpha \lambda _{22}N-\alpha \lambda _{11}N+\alpha \lambda _{11}\beta -\alpha \lambda _{22}\beta \\&Q=\alpha \lambda _{11}-\alpha \lambda _{22} \\&P=\alpha \lambda _{11}\beta -\alpha \lambda _{22}\beta \\&H=\alpha \lambda _{22}\beta -\alpha \lambda _{11}\beta \\&I=\lambda _{11}\beta -\lambda _{22}\beta \\&J=\alpha \lambda _{22}\beta -\alpha \lambda _{11}\beta \\&O=\lambda _{11}\beta -\lambda _{22}\beta \\&M=\lambda _{22}^{2}(2\beta \alpha -2N\alpha -\alpha ^{2})+\lambda _{22}\lambda _{11}(2N\alpha -\beta \alpha +\alpha ^{2}) \\&R=\alpha \lambda _{22}^{2}-\alpha \lambda _{22}\lambda _{11} \\&W=\lambda _{22}^{2}(2N\alpha ^{2}\beta -N^{2}\alpha ^{2}-\beta ^{2}\alpha ^{2})+\lambda _{22}\lambda _{11}(2\beta ^{2}\alpha ^{2}+N^{2}\alpha ^{2}-2N\alpha ^{2})-\beta ^{2}\alpha ^{2}\lambda _{11}^{2} \\&K=2\beta \alpha \lambda _{22}^{2}-2\beta \alpha \lambda _{22}\lambda _{11} \\&G=\lambda _{22}^{2}(2\beta ^{2}\alpha -2\alpha ^{2}\beta -2N\beta \alpha )+\lambda _{22}\lambda _{11}(2\alpha ^{2}\beta -4\beta ^{2}\alpha +2N\beta \alpha )+2\beta ^{2}\alpha \lambda _{11}^{2} \\&X=\lambda _{22}^{2}(2N\alpha ^{2}\beta -2\beta ^{2}\alpha ^{2})-2\beta ^{2}\alpha ^{2}\lambda _{11}^{2}+\lambda _{22}\lambda _{11}(4\beta ^{2}\alpha ^{2}-2N\alpha ^{2}\beta ) \\&S=\beta ^{2}\alpha \lambda _{11}^{2}+\beta ^{2}\alpha \lambda _{22}^{2}-2\beta ^{2}\alpha \lambda _{22}\lambda _{11} \\&F=2\beta ^{2}\alpha ^{2}\lambda _{22}\lambda _{11}-\beta ^{2}\alpha ^{2}\lambda _{11}^{2}-\beta ^{2}\alpha ^{2}\lambda _{22}^{2} \\&L=\lambda _{22}^{2}(N^{2}\alpha +2N\alpha ^{2}-2N\beta \alpha -\alpha ^{2}\beta +\beta ^{2}\alpha ) \\&\qquad +\,\lambda _{22}\lambda _{11}(2N\beta \alpha -\beta \alpha +2\alpha ^{2}\beta -2\beta ^{2}\alpha -N^{2}\alpha -2N\alpha ^{2})+\beta ^{2}\alpha \lambda _{11}^{2} \end{aligned}$$
(41)

Coefficients of (26) are:

$$\begin{aligned}&A=N^{2}\alpha \beta (\lambda _{11}-\lambda _{22})-N^{3}\alpha (\lambda _{11}-\lambda _{22}) \\&B=2N\beta \alpha \lambda _{22}+\alpha \beta \lambda _{11}-\beta \alpha \lambda _{22}-N^{3}\lambda _{22} \\&\qquad +\,3N^{2}\alpha \lambda _{11}-3N^{2}\alpha \lambda _{22}-N^{2}\beta (\lambda _{11}-\lambda _{22})-2N\beta \alpha \lambda _{11} \\&C=\alpha \beta \lambda _{11}-\alpha \beta \lambda _{22}+2N\beta (\lambda _{11}-\lambda _{22})-\beta (\lambda _{11}-\lambda _{22}) \\&\qquad +\,3N^{2}\lambda _{22}-3N\alpha \lambda _{11}+3N\alpha \lambda _{22} \\&D=\alpha (\lambda _{11}-\lambda _{22})-\beta (\lambda _{11}-\lambda _{22})-3N\lambda _{22} \\&E=\lambda _{22} \end{aligned}$$
(42)

To solve (36), if:

$$\begin{aligned}&a=\,-E \\&b=4NE \\&c=3DN+C \\&d=2CN+2B \\&e=BN+3A \end{aligned},$$
(43)

then from (36) and (43)

$$\begin{aligned} e+dy+cy^{2}+by^{3}+ay^{4}=0 \end{aligned}$$
(44)

The four roots \(y_{1},y_{2},y_{3},y_{4}\) for the general quartic equation \(e+dy+cy^{2}+by^{3}+ay^{4}=0\) are given in the following formula:

$$\begin{aligned} y_{1,2}=\, & {} \frac{-b}{4a}-S\pm \frac{1}{2}\sqrt{-4S^{2}-2p+\frac{q}{s}} \\ y_{3,4}=\, & {} \frac{-b}{4a}{+}S\pm \frac{1}{2}\sqrt{-4S^{2}-2p+\frac{q}{s}} \end{aligned}$$
(45)

where p and q are:

$$\begin{aligned} p=\, & {} \frac{8ac-3b^{2}}{8a^{2}} \\ q=\, & {} \frac{b^{3}-4abc+8a^{2}d}{8a^{3}} \end{aligned}$$
(46)

and

$$\begin{aligned} S=\, & {} \frac{1}{2}\sqrt{\frac{1}{3a}\left( Q+\frac{{{\varDelta }}_{0}}{Q}\right) -\frac{2p}{3}} \\ Q=\, & {} \root 3 \of {\frac{{{\varDelta }}_{1}+\sqrt{{{\varDelta }}_{1}^{2}-4{{\varDelta }}_{0}^{3}}}{2}} \end{aligned}$$
(47)

with

$$\begin{aligned} \varDelta _{0}=\, & {} c^{2}-3bd+12ae \\ \varDelta _{1}=\, & {} 2c^{3}-9bcd+27b^{2}e+27ad^{2}-72ace \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, S., Darmani, Y. p-Epidemic forwarding method for heterogeneous delay-tolerant networks. J Supercomput 75, 7244–7264 (2019). https://doi.org/10.1007/s11227-019-02886-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02886-7

Keywords

Navigation