Skip to main content
Log in

HSIR: hybrid architecture for sensor identification and registration for IoT applications

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Internet of things is the backbone of the smart applications, which attracts many types of research on the state-of-the-art network applications. Enormous research on sensor networks left more devices that are sensible in the day-to-day life. Hence, implementing new sensor networks for smart applications is not necessary. Many researchers have accepted and utilized existing networks for their request. In this case, techniques for identifying and registering existing sensible things are on demand. This paper proposed a hybrid framework for sensor identification and registration (HSIR) for new IoT applications. This research proposing HSIR as a framework aimed for user-friendliness in the IoT as well as addressed toward the scalability requirement of IoT applications. This model uses content- and context-based multicast communication instead of broadcast to reduce energy and time consumption in sensor identification. HSIR also proposed a public key to register the new network for application requirements. The behaviour of the proposed model has been assayed in realistic with simulations and proved by comparing other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnaghi P, Wang W, Henson C, Taylor K (2012) Semantics for the Internet of Things: early progress and back to the future. Int J Semant Web Inf Syst (IJSWIS) 8(1):1–21

    Article  Google Scholar 

  2. Bröring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, Liang S, Lemmens R (2011) New generation sensor web enablement. Sensors 11(3):2652–2699

    Article  Google Scholar 

  3. Calbimonte J-P, Jeung H, Corcho O, Aberer K (2012) Enabling query technologies for the semantic sensor web. Int J Semant Web Inf Syst (IJSWIS) 8(1):43–63

    Article  Google Scholar 

  4. Chen Y, Zhou J, Guo M (2016) A context-aware search system for internet of things based on hierarchical context model. Telecommun Syst 62(1):77–91

    Article  Google Scholar 

  5. Compton M, Barnaghi P, Bermudez L, GarcíA-Castro R, Corcho O, Cox S, Graybeal J et al (2012) “The SSN ontology of the W3C semantic sensor network incubator group. Web Semant Sci Ser Agents World Wide Web 17:25–32

    Article  Google Scholar 

  6. De S, Elsaleh T, Barnaghi P, Meissner S (2012) An internet of things platform for real-world and digital objects. Scalable Comput Pract Exp 13(1):45–58

    Google Scholar 

  7. Ebrahimi M, ShafieiBavani E, Wong RK, Fong S, Fiaidhi J (2017) An adaptive meta-heuristic search for the internet of things. Future Gener Comput Syst 76:486–494

    Article  Google Scholar 

  8. Elahi BM, Romer K, Ostermaier B, Fahrmair M, Kellerer W (2009) Sensor ranking: a primitive for efficient content-based sensor search. In: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, IEEE Computer Society, pp 217–228

  9. Fan X, Gong G (2012) Accelerating signature-based broadcast authentication for wireless sensor networks. Ad Hoc Netw 10(4):723–736

    Article  MATH  Google Scholar 

  10. García-Castro R, Corcho O, Hill C (2012) A core ontological model for semantic sensor web infrastructures. Int J Semant Web Inf Syst (IJSWIS) 8(1):22–42

    Article  Google Scholar 

  11. Gopikrishnan S, Priakanth P (2016) HSDA: hybrid communication for secure data aggregation in wireless sensor network. Wirel Netw 22(3):1061–1078

    Article  Google Scholar 

  12. Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010) Interacting with the soa-based internet of things: discovery, query, selection, and on-demand provisioning of web services. IEEE Trans Serv Comput 3:223–235

    Article  Google Scholar 

  13. Jirka S, Bröring A, Stasch C (2009) Discovery mechanisms for the sensor web. Sensors 9(4):2661–2681

    Article  Google Scholar 

  14. Lacuesta R, Lloret J, Garcia M, Penalver L (2012) A secure protocol for spontaneous wireless ad hoc networks creation. IEEE Trans Parallel Distrib Syst 24:629–641

    Article  Google Scholar 

  15. Liu YX, Liu A, Guo S, Li Z, Choi Y-J, Sekiya H (2017) Context-aware collect data with energy efficient in cyber–physical cloud systems. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2017.05.029

  16. Ma H-D (2011) Internet of things: objectives and scientific challenges. J Comput Sci Technol 26(6):919–924

    Article  Google Scholar 

  17. Merezeanu D, Vasilescu G, Dobrescu R (2016) Context-aware control platform for sensor network integration in IoT and Cloud. Stud Inform Control 25(4):489–498

    Article  Google Scholar 

  18. Michel J, Julien C, Payton J (2014) Gander: mobile, pervasive search of the here and now in the here and now. IEEE Internet Things J 1(5):483–496

    Article  Google Scholar 

  19. O’Reilly C, Gluhak A, Imran MA, Rajasegarar S (2014) Anomaly detection in wireless sensor networks in a non-stationary environment. IEEE Commun Surv Tutor 16(3):1413–1432

    Article  Google Scholar 

  20. Perera C, Zaslavsky A, Liu CH, Compton M, Christen P, Georgakopoulos D (2014) Sensor search techniques for sensing as a service architecture for the internet of things. IEEE Sens J 14(2):406–420

    Article  Google Scholar 

  21. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor 16(1):414–454

    Article  Google Scholar 

  22. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a service model for smart cities supported by internet of things. Trans Emerg Telecommun Technol 25(1):81–93

    Article  Google Scholar 

  23. Perera C, Jayaraman PP, Zaslavsky A, Georgakopoulos D, Christen P (2014) Mosden: an internet of things middleware for resource constrained mobile devices. In: System Sciences (HICSS), 2014 47th Hawaii International Conference on IEEE, pp 1053–1062

  24. Saxena S (2016) Vector method for ranking of sensors in IoT. In: Inventive Computation Technologies (ICICT), International Conference on IEEE, vol 3, pp 1–5

  25. Shah M, Sardana A (2012) Searching in internet of things using VCS. In: Proceedings of the First International Conference on Security of Internet of Things ACM, pp 63–67

  26. Tan CC, Sheng B, Wang H, Li Q (2010) Microsearch: a search engine for embedded devices used in pervasive computing. ACM Trans Embed Comput Syst (TECS) 9(4):43

    Google Scholar 

  27. Truong C, Kay R (2013) Content-based sensor search for the web of things. In: Global Communications Conference (GLOBECOM), 2013 IEEE, IEEE, pp 2654–2660

  28. Wang H, Tan CC, Li Q (2010) Snoogle: a search engine for pervasive environments. IEEE Trans Parallel Distrib Syst 21(8):1188–1202

    Article  Google Scholar 

  29. Zhang P, Liu Y-A, Fan W, Tang B (2015) Matching state estimation scheme for content-based sensor search in the Web of things. Int J Distrib Sens Netw 11(11):326780

    Article  Google Scholar 

  30. Zhang P, Liu Y, Fan W, Liu S, Tang B (2016) Low-overhead and high-precision prediction model for content-based sensor search in the internet of things. IEEE Commun Lett 20(4):720–723

    Article  Google Scholar 

  31. Zhou Y, De S, Wang W, Moessner K (2016) Search techniques for the web of things: a taxonomy and survey. Sensors 16(5):600

    Article  Google Scholar 

  32. Ziegeldorf JH, Morchon OG, Wehrle K (2014) Privacy in the internet of things: threats and challenges. Secur Commun Netw 7(12):2728–2742

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gopikrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopikrishnan, S., Priakanth, P. & Awangga, R.M. HSIR: hybrid architecture for sensor identification and registration for IoT applications. J Supercomput 75, 5000–5018 (2019). https://doi.org/10.1007/s11227-019-02780-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02780-2

Keywords

Navigation