Skip to main content
Log in

Fault-tolerant routing methodology for hypercube and cube-connected cycles interconnection networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper presents a fault-tolerant routing methodology for both injured hypercube and cube-connected cycles interconnection topologies. The proposed routing methodology efficiently tolerates any pattern of faulty regions with any number of faulty nodes in the network which is based on the best-first search and backtracking strategy. Deadlock freedom of the proposed routing methodology is obtained by only one virtual channel per physical channel. In order to evaluate the proposed routing methodology, a 7-dimensional hypercube network is simulated in various conditions, i.e., different traffic rates, different number of faulty nodes and different message lengths. Simulation results confirm that the proposed routing methodology in comparison with the previous methods provides acceptable performance while it significantly increases the reliability of the network. It also guarantees delivery of messages between any pair of source and destination while the network is connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duato J, Yalamanchili S, Ni L (2003) Interconnection networks an engineering approach. Morgan Kaufmann, Burlington

    Google Scholar 

  2. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. Int J Eurogr Assoc (Computer Graphics Forum) 5(3):179–188

    Article  Google Scholar 

  3. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–433

    Article  Google Scholar 

  4. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with SIMD machine architectures. Int J Eurog Assoc (Computer Graphics Forum) 6(1):3–12

    Google Scholar 

  5. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc (Computer Graphics Forum) 8(1):3–12

    Article  Google Scholar 

  6. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

    Article  Google Scholar 

  7. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th Annual International High Performance Computing Conference, Canada

  8. Arabnia HR (1995) A distributed stereocorrelation algorithm. In: Proceedings of Computer Communications and Networks (ICCCN’95). IEEE

  9. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput (Springer Publishers) 10(3):243–270

    Article  MATH  Google Scholar 

  10. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25(1):43–63

    Article  MATH  Google Scholar 

  11. Parhami B (2006) Introduction to parallel processing: algorithms and architectures. Springer, Berlin

    Google Scholar 

  12. Al-Sadi J, Day K, Ould-Khaoua M (2001) Probability-based fault-tolerant routing in hypercubes. J Comput 44(5):368–373

    Article  MATH  Google Scholar 

  13. Kim J, Shin KG (1993) Deadlock-free fault-tolerant routing in injured hypercubes. J IEEE Trans Comput 42(9):1078–1088

    Article  Google Scholar 

  14. Lan Y (1995) An adaptive fault-tolerant routing algorithm for hypercube multicomputers. J IEEE Trans Parallel Distrib Syst 6(11):1147–1152

    Article  Google Scholar 

  15. Shih JD (1997) Adaptive fault-tolerant wormhole routing algorithms for hypercube and mesh interconnection networks. In: Proceedings of Parallel Processing Symposium IEEE

  16. Su CC, Shin KG (1996) Adaptive fault-tolerant deadlock-free routing in meshes and hypercubes. J IEEE Trans Comput 45(6):666–683

    Article  MATH  Google Scholar 

  17. Abd-El-Barr M, Gebali F (2014) Reliability analysis and fault tolerance for hypercube multi-computer networks. J Inf Sci 276:295–318

    Article  MathSciNet  MATH  Google Scholar 

  18. Ahmad MK, Husain M, Zilli AA (2015) A framework for embedded hypercube interconnection networks: based on neural network approach. Int J Comput Appl 120(2):25–34

    Google Scholar 

  19. Bossard A, Kaneko K, Peng S (2010) Fault-tolerant node-to-set disjoint-path routing in hypercubes. In: Proceedings of Algorithms and Architectures for Parallel Processing

  20. Chatti M, Yehia S, Timsit C, Zertal S (2010) A hypercube-based NoC routing algorithm for efficient all-to-all communications in embedded image and signal processing applications. In: Proceedings of International Conference on High Performance Computing and Simulation

  21. Qiu K (2008) An efficient disjoint shortest paths routing algorithm for the hypercube. In: Proceedings of 14th International Conference on Parallel and Distributed Systems

  22. Patooghy A, Sarbazi-Azad H (2006) Analytical performance modelling of partially adaptive routing in wormhole hypercubes. In: Proceedings of Parallel and Distributed Processing Symposium

  23. Felten EW (1989) Best-first branch-and bound on a hypercube. In: Proceedings of the Third Conference on Hypercube Concurrent Computers And Applications II

  24. Liu J, Zhang X (2014) Cube-connected complete graphs. Int J Appl Math 44(3):134–136

    MathSciNet  Google Scholar 

  25. Jan GE, Lin MB (2005) Concentration, load balancing, partial permutation routing, and superconcentration on cube-connected cycles parallel computers. J Parallel Distrib Comput 65(12):1471–1482

    Article  MATH  Google Scholar 

  26. Chen MS, Shin KG (1990) Adaptive fault-tolerant routing in hypercube multicomputers. J IEEE Trans Comput 39(12):1406–1416

    Article  MathSciNet  Google Scholar 

  27. Chiu GM, Wu SP (1996) A fault-tolerant routing strategy in hypercube multicomputers. J IEEE Trans Comput 45(2):143–155

    Article  MATH  Google Scholar 

  28. Chen MS, Shin KG (1990) Depth-first search approach for fault-tolerant routing in hypercube multicomputers. J IEEE Trans Parallel Distrib Syst 1(2):152–159

    Article  MathSciNet  Google Scholar 

  29. Lan Y (1994) A fault-tolerant routing algorithm in hypercubes. In: Proceedings of International Conference on Parallel Processing

  30. Blough DM, Wang HY (1995) Cooperative diagnosis and routing in fault-tolerant multiprocessor systems. J Parallel Distrib Comput 27(2):205–211

    Article  MATH  Google Scholar 

  31. Wu J (1995) Unicasting in faulty hypercubes using safety levels. In: Proceedings of the International Conference on Parallel Processing

  32. Al-Sadi J, Day K, Ould-Khaoua M (2001) Unsafety vectors: a new fault-tolerant routing for k-ary n-cubes. In: Proceedings of Microprocessors and Microsystems

  33. Habibian H, Patooghy A, Fazeli M (2012) An efficient fault tolerant routing algorithm for binary cube interconnection networks. In: Proceedings of CSI International Symposium on Computer Architecture and Digital Systems IEEE

  34. Meliksetian DS, Chen CR (1993) Optimal routing algorithm and the diameter of the cube-connected cycles. J IEEE Trans Parallel Distrib Syst 4(10):1172–1178

    Article  Google Scholar 

  35. Nayebi A, Meraji S, Shamaei A, Sarbazi-Azad H (2007) Xmulator: a listener-based integrated simulation platform for interconnection networks. In: Proceedings of Asia International Conference on Modelling and Simulation

  36. Lee TC, Hayes JP (1992) A fault-tolerant communication scheme for hypercube computers. J IEEE Trans Comput 39(12):1242–1256

    Article  MathSciNet  Google Scholar 

  37. Patooghy A, Sarbazi-Azad H (2007) Comparative analytical performance evaluation of adaptivity in wormhole-switched hypercubes. Simul Model Pract Theory 15(4):400–415

    Article  Google Scholar 

  38. Loucif S, Ould-Khaoua M, Mackenzie LM (2000) Modelling fully-adaptive routing in hypercubes. Telecommun Syst 13(1):111–118

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Habibian.

Additional information

This paper was in part supported by a Grant from IPM, (No. CS1396-4-06).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibian, H., Patooghy, A. Fault-tolerant routing methodology for hypercube and cube-connected cycles interconnection networks. J Supercomput 73, 4560–4579 (2017). https://doi.org/10.1007/s11227-017-2033-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2033-7

Keywords

Navigation