Skip to main content
Log in

Compressive sampling and data fusion-based structural damage monitoring in wireless sensor network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Lamb wave phased array structural health monitoring method is effective in structural damage monitoring. In this method, the damage scattering signal can be obtained by comparing the damage structural response signal with health structural response signal, and it can be used for structural damage identification. But in the structural health monitoring based on wireless sensor networks, this method has some inevitable defects in data transmission. A large number of sampling data of damage response signal will cause huge wireless communication burden. To solve this problem, we proposed a phased array image method based on compressive sampling and data fusion for wireless structural damage monitoring. First, compressive sampling signal by compressive sampling method was collected. Then, data fusion for multi-sensor’s damage response signal was implemented in phased array. Finally, the Lamb wave phased array damage identification method based on compressive sampling and data fusion was proposed. Experimental results on carbon composite structure show that the proposed method can largely save network bandwidth and energy. This method can also realize the damage identification accurately on the aviation aluminum plate and keep the detection error within 0.82 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sohn S (2016) Feasibility study on the use of wireless accelerometers in the experimental modal testing. J Supercomput 72(7):2848–2859

    Article  Google Scholar 

  2. De Oliveira MA, Filho JV (2012) Structural health monitoring based on AR models and PZT sensors. IEEE Sens J 2012:1–4. doi:10.1109/ICSENS.2012.6411334

  3. Ji S, Wang F, Guo P, Sun YJ, Wang J (2015) Compressive sampling based on wavelet analysis for lamb wave signals in wireless structural health monitoring. J Internet Technol 16(4):643–649

    Google Scholar 

  4. Engholm M, Stepinski T (2010) Adaptive beamforming for array imaging of plate structures using lamb waves. IEEE Trans Ultrason Ferroelectr Freq Control 57(12):2712–2724

    Article  Google Scholar 

  5. Purekar AS, Pines DJ (2010) Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation. J Intell Mater Syst Struct 21(10):995–1010

    Article  Google Scholar 

  6. Yuan SF, Wang Z, Qiu L et al (2013) A multi-radio sink node designed for wireless SHM applications. Smart Struct Syst 11(3):261–282

    Article  Google Scholar 

  7. Wu J, Yuan SF, Ji S, Zhou GY, Wang Y, Wang ZL (2010) Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring. Expert Syst Appl 37(3):2028–2036

    Article  Google Scholar 

  8. Zhang Y, Li J (2006) Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring. J Comput Civil Eng 20(6):390–399

    Article  Google Scholar 

  9. Zhang Y, Li J (2006) Efficient seismic response data storage and transmission using ARX model-based sensor data compression algorithm. Earthq Eng Struct Dyn 35(6):781–788

    Article  Google Scholar 

  10. Chintalapudi KK (2006) Design of wireless sensor network based structural health monitoring systems[D]. Univ. of Southern California, Los Angeles

    Google Scholar 

  11. Zhang YF, Li J (2007) Linear predietor-based lossless compression of vibration sensor data: systems approach. J Eng Mech ASCE 133(4):431–441

    Article  Google Scholar 

  12. Jian S, Tan HW, Wang J, Wang JW, Lee SY (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Ttechnol 16(1):171–178

    Google Scholar 

  13. Dong MX, Ota KR, Lin M (2014) UAV-assisted data gathering in wireless sensor networks. J Supercomput 70(3):1142–1155

    Article  Google Scholar 

  14. Ren YJ, Shen J, Wang J, Han J, Lee SY (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Ttechnol 16(2):317–323

    Google Scholar 

  15. Xie SD, Wang YX (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(78):231–246

    Article  Google Scholar 

  16. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  17. Candes E (2006) Compressive sampling. Proceedings of International Congress of Mathematicians. European Mathematical Society Publishing House, Madrid, pp 1433–1452

    Google Scholar 

  18. Masoum A, Meratnia N, Havinga PJM (2013) A distributed compressive sensing technique for data gathering in wireless sensor networks. In: 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, Ontario, 21–24 October 2013, pp 207–216

  19. Ma J, Hussaini MY (2011) Extensions of compressed imaging: flying sensor, coded mask, and fast decoding. IEEE Trans Instrum Meas 60(9):3128–3139

    Article  Google Scholar 

  20. Chengli S, Qi Z, Minghua W (2014) A novel speech enhancement method based on constrained low-rank and sparse matrix decomposition. Speech Commun 60(5):44–55

    Google Scholar 

  21. Huang Y, Beck JL, Wu S et al (2011) Robust diagnostics for bayesian compressive sensing technique in structural health monitoring. Struct Health Monit 7(1):103–110

    Google Scholar 

  22. Mascarenas D, Hush D, Theiler J, et al (2011) The application of compressed sensing to detecting damage in structures. In: The 8th International Workshop on Structural Health Monitoring. Stanford University, Stanford

  23. O’Connor SM, Lynch JP, Gilbert AC (2011) Compressive sensing approach for structural health monitoring of ship hulls. In: The 8th International Workshop on Structural Health Monitoring. Stanford University, Stanford

  24. Zou Z, Bao Y, Li H, Spencer B, Ou J (2014) Embedding compressive sensing based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sens J 15(2):797–808

    Google Scholar 

  25. Morlier J, Bettebghor D (2012) Compressed sensing applied to mode shapes reconstruction. IMAC Conference and Exposition on Structural Dynamics. Jacksonville, USA

  26. Ji S, Sun YJ, Shen J (2014) A method of data recovery based on compressive sensing in wireless structural health monitoring. Math Prob Eng 2014. doi:10.1155/2014/546478

  27. Sun YJ, Zhang YH, Qian CS, Zhang ZJ (2013) Near-field ultrasonic phased array deflection focusing based CFRP wing box structural health monitoring. Int J Distrib Sens Netw 4:1–6

    Google Scholar 

  28. Ji S, Wang F, Liu WJ, Yuan XM (2015) Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme. Front Phys China 10(2):192–197

    Google Scholar 

  29. Candes E, Tao T (2007) Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  30. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  31. Baraniuk RG (2007) Compressive sensing. IEEE Signal Proc Mag 24(4):118–121

    Article  MathSciNet  Google Scholar 

  32. Candes E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):410–412

    Article  MathSciNet  MATH  Google Scholar 

  33. Dai QH, Fu CJ, Ji XY (2011) Research on compressed sensing. Chin J Comput 34(3):425–434

    Article  MathSciNet  Google Scholar 

  34. Fang H, Yang HR (2011) Greedy algorithms and compressed sensing. Chin Acta Autom Sin 37(12):1413–1421

    MathSciNet  Google Scholar 

  35. Theis FJ, Jung A, Puntonet CG, et al (2007) Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans Inf Theory April. dharmpal Takhar Jason. 15(2):419-439

  36. Candes E (2008) The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9–10):589–592

    Article  MathSciNet  MATH  Google Scholar 

  37. Foucart S, Lai M (2009) Sparsest solutions of underdetermined linear systems via Lq-minimization for 0 \(<\) q \(<\) 1. Appl Comput Harmon Anal 26(3):395–407

    Article  MathSciNet  MATH  Google Scholar 

  38. Cai T, Wang L, Xu GW (2010) Shifting inequality and recovery of sparse signals. IEEE Trans Signal Proces 58(3):1300–1308

    Article  MathSciNet  Google Scholar 

  39. Cai T, Wang L, Xu GW (2010) New bounds for restricted isometry constants. IEEE Trans Inf Theory 56(9):4388–4394

    Article  MathSciNet  MATH  Google Scholar 

  40. Mallat S, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  41. Needell D, Vershynin R (2010) Signal recovery from incomplete an inaccurate measurement via regularized orthogonal matching pursuit. IEEE J Select Topics Signal Process 4(2):310–316. doi:10.1109/JSTSP.2010.2042412

    Article  Google Scholar 

  42. Donoho DL, Tsaig Y, Drori I, Starck JL (2012) Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM J Sci Comput 58(1):33–61

    MathSciNet  MATH  Google Scholar 

  44. Kim SJ, Koh K, Lustig M (2007) Gorinevsky: A method for large scale regularized least squares. IEEE J Select Topics Signal Process 4:606–617

    Article  Google Scholar 

  45. Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J Select Topics Signal Process 1(4):586–598

    Article  Google Scholar 

  46. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356

    Article  MathSciNet  Google Scholar 

  47. Llinas J, Hall DL (1998) An introduction to multi-sensor data fusion. IEEE Int Symp Circuits Syst 6:537–540

    Google Scholar 

  48. Bar-Shalom Y (1981) On the track-to-track correlation problem. IEEE Trans Autom Control 26(2):571–572

    Article  MathSciNet  MATH  Google Scholar 

  49. Beugnon C, Singh T, Llinas J et al (2000) Adaptive track fusion in a multisensor environment. In: Proceedings of the Third International Conference on Information Fusion, TUC2/24-TUC22/31

  50. Gao R, Wen YY, Zhao H (2015) Secure data fusion in wireless multimedia sensor networks via compressed sensing. J Sens 636297

  51. Fuzeng C (1995) Mathematical methods of multi-sensor data fusion. Chin Math Pract Theory 2:11–15

    Google Scholar 

  52. Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy efficient communication protocol for wireless micro sensor networks. Proceedings of 33rd Annual Hawaii International Conference on System Sciences. Hawaii, USA, pp 3005–3014

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61672290, 61402234, 51505234, 51305211), Six talent peaks project in Jiangsu Province (XYDXXJS-040) and by the PAPD. Professor Jin Wang is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Tan, C., Yang, P. et al. Compressive sampling and data fusion-based structural damage monitoring in wireless sensor network. J Supercomput 74, 1108–1131 (2018). https://doi.org/10.1007/s11227-016-1938-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1938-x

Keywords

Navigation