Skip to main content
Log in

Accelerating compute-intensive image segmentation algorithms using GPUs

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Image segmentation is an important process that facilitates image analysis such as in object detection. Because of its importance, many different algorithms were proposed in the last decade to enhance image segmentation techniques. Clustering algorithms are among the most popular in image segmentation. The proposed algorithms differ in their accuracy and computational efficiency. This paper studies the most famous and new clustering algorithms and provides an analysis on their feasibility for parallel implementation. We have studied four algorithms which are: fuzzy C-mean, type-2 fuzzy C-mean, interval type-2 fuzzy C-mean, and modified interval type-2 fuzzy C-mean. We have implemented them in a sequential (CPU only) and a parallel hybrid CPU–GPU version. Speedup gains of 6\(\times \) to 20\(\times \) were achieved in the parallel implementation over the sequential implementation. We detail in this paper our discoveries on the portions of the algorithms that are highly parallel so as to help the image processing community, especially if these algorithms are to be used in real-time processing where efficient computation is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Auntminnie (2016). http://www.auntminnie.com/index.aspx?sec=def

  2. Cudafy.net (2016). https://cudafy.codeplex.com/

  3. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  4. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  5. Al-Ayyoub M, Abu-Dalo AM, Jararweh Y, Jarrah M, Al Sad M (2015) A GPU-based implementations of the fuzzy c-means algorithms for medical image segmentation. J Supercomput 71(8):3149–3162

    Article  Google Scholar 

  6. Al-Ayyoub M, Qussai Y, Shehab MA, Jararweh Y, Albalas F (2016) Accelerating clustering algorithms using GPUs. In: Conference: 2016 IEEE High Performance Extreme Computing Conference (HPEC-2016), p 1. IEEE

  7. Alsmirat MA, Jararweh Y, Al-Ayyoub M, Shehab MA, Gupta BB (2016) Accelerating compute intensive medical imaging segmentation algorithms using hybrid CPU–GPU implementations. Multimed Tools Appl. doi:10.1007/s11042-016-3884-2

  8. Arabnia H, Oliver M (1987) Arbitrary rotation of raster images with SIMD machine architectures. Comput Graph Forum 6(1):3–11

    Article  Google Scholar 

  9. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192

    Article  Google Scholar 

  10. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–269

    Article  MATH  Google Scholar 

  11. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. Comput Graph Forum 5(3):179–188

    Article  Google Scholar 

  12. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–432

    Article  Google Scholar 

  13. Begum SA, Devi OM (2012) A rough type-2 fuzzy clustering algorithm for mr image segmentation. Int J Comput Appl 54(4):4–11

    Google Scholar 

  14. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  15. Bhandarkar S, Arabnia H (1995) The Hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24(1):107–114

    Article  Google Scholar 

  16. Bhandarkar SM, Arabnia HR (1995) The refine multiprocessor theoretical properties and algorithms. Parallel Comput 21(11):1783–1805

    Article  Google Scholar 

  17. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recogn Artif Intell 09(02):201–229

    Article  Google Scholar 

  18. Cheng H, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317

    Article  MATH  Google Scholar 

  19. Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. Wiley, New York

    Google Scholar 

  20. Cook S (2012) CUDA programming: a developer’s guide to parallel computing with GPUs. Morgan Kaufmann, Newnes

  21. Doi K (2005) Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 78(suppl_1):s3–s19

  22. Eklund A, Paul Dufort DF, LaConte SM (2013) Medical image processing on the GPU past, present and future. Med Image Anal 17(8):01–22

    Article  Google Scholar 

  23. Rhee FCH, Hwang C (2001) A type-2 fuzzy c-means clustering algorithm. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol 4, pp 1926–1929

  24. Gauge C (2016) Fuzzy c-mean algorithm (2016). http://www.codeproject.com/Articles/91675/Computer-Vision-Applications-with-C-Fuzzy-C-means

  25. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Syst 15(1):107–120

    Article  Google Scholar 

  26. İçer S (2013) Automatic segmentation of corpus collasum using Gaussian mixture modeling and fuzzy c means methods. Comput Methods Progr Biomed 112(1):38–46

    Article  Google Scholar 

  27. Jafri R, Ali SA, Arabnia HR (2013) Computer vision-based object recognition for the visually impaired using visual tags. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), p 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)

  28. Jafri R, Ali SA, Arabnia HR, Fatima S (2014) Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis Comput 30(11):1197–1222

    Article  Google Scholar 

  29. Jafri R, Arabnia HR (2008) Fusion of face and gait for automatic human recognition. In: 5th International Conference on Information Technology: New Generations, 2008, ITNG 2008, pp 167–173. IEEE

  30. Ji Z, Xia Y, Sun Q, Chen Q, Feng D (2014) Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation. Neurocomputing 134:60–69

    Article  Google Scholar 

  31. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL (2001) Medical image processing, analysis and visualization in clinical research. In: 14th IEEE Symposium on Computer-Based Medical Systems 2001. CBMS 2001. Proceedings, pp 381–386

  32. Michel K (2016) Parasitology research (2016). https://www.k-state.edu/parasitology/

  33. Olabarriaga S, Smeulders A (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5(2):127–142

    Article  Google Scholar 

  34. Pan L, Gu L, Xu J (2008) Implementation of medical image segmentation in cuda. In: 2008 International Conference on Information Technology and Applications in Biomedicine, pp 82–85. IEEE

  35. Papadrakakis M, Stavroulakis G, Karatarakis A (2011) A new era in scientific computing: domain decomposition methods in hybrid CPU–GPU architectures. Comput Methods Appl Mech Eng 200(13):1490–1508

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiu C, Xiao J, Yu L, Han L, Iqbal MN (2013) A modified interval type-2 fuzzy c-means algorithm with application in MR image segmentation. Pattern Recogn Lett 34(12):1329–1338

    Article  Google Scholar 

  37. Rowińska Z, Gocławski J (2012) Cuda based fuzzy c-means acceleration for the segmentation of images with fungus grown in foam matrices. Image Process Commun 17(4):191–200

    Google Scholar 

  38. Severance C (2010) High performance computing, an open textbook

  39. Shehab MA, Al-Ayyoub M, Jararweh Y (2015) Improving fcm and T2FCM algorithms performance using GPUS for medical images segmentation. In: 2015 6th International Conference on Information and Communication Systems (ICICS), pp 130–135. IEEE

  40. Shih FY, Cheng S (2005) Automatic seeded region growing for color image segmentation. Image Vis Comput 23(10):877–886

    Article  Google Scholar 

  41. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning. ISBN-10: 1133593607

  42. Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding fuzzy c-means hybrid approach. Pattern Recogn 44(1):1–15

    Article  MATH  Google Scholar 

  43. Tang J (2010) A color image segmentation algorithm based on region growing. In: 2010 2nd International Conference on Computer Engineering and Technology (ICCET), vol 6, pp V6–634. IEEE

  44. Ugarriza LG, Saber E, Vantaram SR, Amuso V, Shaw M, Bhaskar R (2009) Automatic image segmentation by dynamic region growth and multiresolution merging. IEEE Trans Image Process 18(10):2275–2288

    Article  MathSciNet  Google Scholar 

  45. Walters JP, Balu V, Kompalli S, Chaudhary V (2009) Evaluating the use of gpus in liver image segmentation and hmmer database searches. In: IEEE International Symposium on Parallel Distributed Processing, 2009. IPDPS 2009, pp 1–12. IEEE

  46. Wang H, Fei B (2009) A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme. Med Image Anal 13(2):193–202

    Article  Google Scholar 

  47. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25(1):43–62

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is funded by Jordan University of Science and Technology (JO) (Grant No. 20160081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Jararweh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehab, M., Al-Ayyoub, M., Jararweh, Y. et al. Accelerating compute-intensive image segmentation algorithms using GPUs. J Supercomput 73, 1929–1951 (2017). https://doi.org/10.1007/s11227-016-1897-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1897-2

Keywords

Navigation