Skip to main content

Advertisement

Log in

CEVP: Cross Entropy based Virtual Machine Placement for Energy Optimization in Clouds

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Big data trends have recently brought unrivalled opportunities to the cloud systems. Numerous virtual machines (VMs) have been widely deployed to enable the on-demand provisioning and pay-as-you-go services for customers. Due to the large complexity of the current cloud systems, promising VM placement algorithm are highly desirable. This paper focuses on the energy efficiency and thermal stability issues of the cloud systems. A Cross Entropy based VM Placement (CEVP) algorithm is proposed to simultaneously minimize the energy cost, total thermal cost and the number of hot spots in the data center. Simulation results indicate that the proposed CEVP algorithm can (1) achieve energy savings of 26.2 % on average, (2) efficiently reduce the temperature cost by up to 6.8 % and (3) significantly decrease the total number of the hot spots by 60.1 % on average in the cloud systems, by comparing to the Ant Colony System-based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang L, Chen D, Hu Y, Ma Y, Wang J (2013) Towards enabling cyberinfrastructure as a service in clouds. Comput Electr Eng 39(1):3–14

    Article  Google Scholar 

  2. Wang L, Kunze M, Tao J, von Laszewski G (2011) Towards building a cloud for scientific applications. Adv Eng Softw 42(9):714–722

    Article  Google Scholar 

  3. Wang L, von Laszewski G, Younge AJ, He X, Kunze M, Tao J, Cheng F (2010) Cloud computing: a perspective study. New Gener Comput 28(2):137–146

    Article  MATH  Google Scholar 

  4. Wang L, Chen D, Huang F (2011) Virtual workflow system for distributed collaborative scientific applications on grids. Comput Electr Eng 37(3):300–310

    Article  Google Scholar 

  5. Wang L, Chen D, Zhao J, Tao J (2012) Resource management of distributed virtual machines. IJAHUC 10(2):96–111

    Article  Google Scholar 

  6. Wang L, von Laszewski G, Chen D, Tao J, Kunze M (2010) Provide virtual machine information for grid computing. IEEE Trans Syst Man Cybern Part A 40(6):1362–1374

    Article  Google Scholar 

  7. Wang L, von Laszewski G, Kunze M, Tao J, Dayal J (2010) Provide virtual distributed environments for grid computing on demand. Adv Eng Softw 41(2):213–219

    Article  MATH  Google Scholar 

  8. Wang L, von Laszewski G, Tao J, Kunze M (2010) Virtual data system on distributed virtual machines in computational grids. IJAHUC 6(4):194–204

    Article  Google Scholar 

  9. Zhang X, Yue Q, He Z (2014) Dynamic energy-efficient virtual machine placement optimization for virtualized clouds. In: Proceedings of the 2013 international conference on electrical and information technologies for rail transportation (EITRT2013)-volume II. Springer, Berlin, pp 439–448

  10. Bilal K, Khan SU, Zhang L, Li H, Hayat K, Madani SA, Min-Allah N, Wang L, Chen D, Iqbal MI, Xu C-Z, Zomaya AY (2013) Quantitative comparisons of the state-of-the-art data center architectures. Concurr Comput Pract Exp 25(12):1771–1783

    Article  Google Scholar 

  11. Teyeb H, Balma A, Ben Hadj-Alouane N, Tata S (2014) Optimal virtual machine placement in large-scale cloud systems. In: Proceedings of the 2014 IEEE 7th international conference on cloud computing (CLOUD), pp 424–431. IEEE

  12. Zhang W, Wang L, Liu D, Song W, Ma Y, Liu P, Chen D (2013) Towards building a multi-datacenter infrastructure for massive remote sensing image processing. Concurr Comput Pract Exp 25(12):1798–1812

    Article  Google Scholar 

  13. Zhang W, Wang L, Ma Y, Liu D (2014) Design and implementation of task scheduling strategies for massive remote sensing data processing across multiple data centers. Softw Pract Exp 44(7):873–886

    Article  Google Scholar 

  14. Dong X, El-Gorashi T, Elmirghani JMH (2011) Green IP over WDM networks with data centers. J Lightwave Technol 29(12):1861–1880

    Article  Google Scholar 

  15. Wang L, Khan SU, Dayal J (2012) Thermal aware workload placement with task-temperature profiles in a data center. J Supercomput 61(3):780–803

    Article  Google Scholar 

  16. Wang L, Khan SU (2013) Review of performance metrics for green data centers: a taxonomy study. J Supercomput 63(3):639–656

    Article  MathSciNet  Google Scholar 

  17. Wang L, von Laszewski G, Huang F, Dayal J, Frulani T, Fox G (2011) Task scheduling with ann-based temperature prediction in a data center: a simulation-based study. Eng Comput 27(4):381–391

    Article  Google Scholar 

  18. Meng X, Pappas V, Zhang L (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: Proceedings of the 2010 IEEE INFOCOM, pp 1–9

  19. Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J Comput Syst Sci 79(8):1230–1242

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu J, Fortes JAB (2010) Multi-objective virtual machine placement in virtualized data center environments. In: Proceedings of 2010 IEEE/ACM international conference on cyber, physical and social computing (CPSCom), pp 179–188. IEEE

  21. Tang Q, Gupta SKS, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans Parallel Distrib Syst 19(11):1458–1472

    Article  Google Scholar 

  22. Bodas D (2003) Data center power management and benefits to modular computing. In: Intel developer forum

  23. Feng W-C, Ching A, Hsu C-H (2007) Green supercomputing in a desktop box. In: Proceedings of the 2007 IEEE international parallel and distributed processing symposium, 2007. IPDPS, pp 1–8. IEEE

  24. von Laszewski G, Wang L, Younge AJ, He X (2009) Power-aware scheduling of virtual machines in dvfs-enabled clusters. In: Proceedings of the 2009 IEEE international conference on cluster computing, August 31–September 4, 2009, New Orleans, Louisiana, USA, pp 1–10

  25. Wang L, von Laszewski G, Dayal J, Wang F (2010) Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: 10th IEEE/ACM international conference on cluster, cloud and grid computing, (CCGrid) 2010, 17–20 May 2010, Melbourne, Victoria, Australia, pp 368–377

  26. Sawyer R (2004) Calculating total power requirements for data centers. In: White Paper, American Power Conversion

  27. Govindavajhala S, Appel AW (2003) Using memory errors to attack a virtual machine. In: Proceedings of 2003 symposium on security and privacy, pp 154–165. IEEE

  28. Smith J, Nair R (2005) Virtual machines: versatile platforms for systems and processes. Elsevier, Amsterdam

    MATH  Google Scholar 

  29. Von Laszewski G, Wang L, Younge AJ, He X (2009) Power-aware scheduling of virtual machines in dvfs-enabled clusters. In: Proceedings of the 2009 IEEE international conference on cluster computing and workshops, pp 1–10. IEEE

  30. vsphere 5.1 documentation. https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.resmgmt.doc%2FGUID-F40F901D-C1A7-43E2-90AF-E6F98C960E4B.html

  31. Kolodziej J, Khan SU, Xhafa F (2011) Genetic algorithms for energy-aware scheduling in computational grids. In: Proceedings of the 2011 international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC), pp 17–24. IEEE

  32. Weste NHE, Eshraghian K (1985) Principles of cmos vlsi design: a systems perspective. NASA STI/Recon Tech Rep A 85:47028

    Google Scholar 

  33. Martin SM, Flautner K, Mudge T, Blaauw D (2002) Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In: Proceedings of the 2002 IEEE/ACM international conference on computer-aided design, pp 721–725. ACM

  34. Wei T, Chen X, Hu S (2011) Reliability-driven energy-efficient task scheduling for multiprocessor real-time systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(10):1569–1573

    Article  MathSciNet  Google Scholar 

  35. Cong J, Zhang Y (2006) Thermal-aware physical design flow for 3-d ics. In: Proceedings of IEEE international VLSI multilevel interconnection conference. Citeseer, pp 73–80

  36. Hung W-L, Xie Y, Vijaykrishnan N, Addo-Quaye C, Theocharides T, Irwin MJ (2005) Thermal-aware floorplanning using genetic algorithms. In: Proceedings of the 2005 international symposium on quality of electronic design, pp 634–639. IEEE

  37. Han Y, Koren I (2007) Simulated annealing based temperature aware floorplanning. J Low Power Electron. 3(2):141–155

    Article  Google Scholar 

  38. Huang W, Sankaranarayanan K, Skadron K, Ribando RJ, Stan MR (2008) Accurate, pre-RTL temperature-aware design using a parameterized, geometric thermal model. IEEE Trans Comput 57(9):1277–1288

    Article  MathSciNet  Google Scholar 

  39. Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer, Berlin

    Book  MATH  Google Scholar 

  40. De Boer P-T, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Ann Oper Res 134(1):19–67

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharon H, Thidapat C, Yun X, Robert D (2013) Enhancing multicore reliability through wear compensation in online assignment and scheduling. In: Proceedings of the 2013 design, automation and test in Europe conference and exhibition (DATE), pp 1373–1378

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 61501411 and 61440018) and the China Postdoctoral Science Foundation (2014M552112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunliang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, Y., Zomaya, A.Y. et al. CEVP: Cross Entropy based Virtual Machine Placement for Energy Optimization in Clouds. J Supercomput 72, 3194–3209 (2016). https://doi.org/10.1007/s11227-016-1630-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1630-1

Keywords

Navigation